// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testlapack import ( "fmt" "math" "math/cmplx" "strconv" "testing" "golang.org/x/exp/rand" "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" "gonum.org/v1/gonum/lapack" ) type Dgeever interface { Dgeev(jobvl lapack.LeftEVJob, jobvr lapack.RightEVJob, n int, a []float64, lda int, wr, wi []float64, vl []float64, ldvl int, vr []float64, ldvr int, work []float64, lwork int) int } type dgeevTest struct { a blas64.General evWant []complex128 // If nil, the eigenvalues are not known. valTol float64 // Tolerance for eigenvalue checks. vecTol float64 // Tolerance for eigenvector checks. } func DgeevTest(t *testing.T, impl Dgeever) { rnd := rand.New(rand.NewSource(1)) for i, test := range []dgeevTest{ { a: A123{}.Matrix(), evWant: A123{}.Eigenvalues(), }, dgeevTestForAntisymRandom(10, rnd), dgeevTestForAntisymRandom(11, rnd), dgeevTestForAntisymRandom(50, rnd), dgeevTestForAntisymRandom(51, rnd), dgeevTestForAntisymRandom(100, rnd), dgeevTestForAntisymRandom(101, rnd), { a: Circulant(2).Matrix(), evWant: Circulant(2).Eigenvalues(), }, { a: Circulant(3).Matrix(), evWant: Circulant(3).Eigenvalues(), }, { a: Circulant(4).Matrix(), evWant: Circulant(4).Eigenvalues(), }, { a: Circulant(5).Matrix(), evWant: Circulant(5).Eigenvalues(), }, { a: Circulant(10).Matrix(), evWant: Circulant(10).Eigenvalues(), }, { a: Circulant(15).Matrix(), evWant: Circulant(15).Eigenvalues(), valTol: 1e-12, }, { a: Circulant(30).Matrix(), evWant: Circulant(30).Eigenvalues(), valTol: 1e-11, }, { a: Circulant(50).Matrix(), evWant: Circulant(50).Eigenvalues(), valTol: 1e-11, }, { a: Circulant(101).Matrix(), evWant: Circulant(101).Eigenvalues(), valTol: 1e-10, }, { a: Circulant(150).Matrix(), evWant: Circulant(150).Eigenvalues(), valTol: 1e-9, }, { a: Clement(2).Matrix(), evWant: Clement(2).Eigenvalues(), }, { a: Clement(3).Matrix(), evWant: Clement(3).Eigenvalues(), }, { a: Clement(4).Matrix(), evWant: Clement(4).Eigenvalues(), }, { a: Clement(5).Matrix(), evWant: Clement(5).Eigenvalues(), }, { a: Clement(10).Matrix(), evWant: Clement(10).Eigenvalues(), }, { a: Clement(15).Matrix(), evWant: Clement(15).Eigenvalues(), }, { a: Clement(30).Matrix(), evWant: Clement(30).Eigenvalues(), valTol: 1e-11, }, { a: Clement(50).Matrix(), evWant: Clement(50).Eigenvalues(), valTol: 1e-8, }, { a: Creation(2).Matrix(), evWant: Creation(2).Eigenvalues(), }, { a: Creation(3).Matrix(), evWant: Creation(3).Eigenvalues(), }, { a: Creation(4).Matrix(), evWant: Creation(4).Eigenvalues(), }, { a: Creation(5).Matrix(), evWant: Creation(5).Eigenvalues(), }, { a: Creation(10).Matrix(), evWant: Creation(10).Eigenvalues(), }, { a: Creation(15).Matrix(), evWant: Creation(15).Eigenvalues(), }, { a: Creation(30).Matrix(), evWant: Creation(30).Eigenvalues(), }, { a: Creation(50).Matrix(), evWant: Creation(50).Eigenvalues(), }, { a: Creation(101).Matrix(), evWant: Creation(101).Eigenvalues(), }, { a: Creation(150).Matrix(), evWant: Creation(150).Eigenvalues(), }, { a: Diagonal(0).Matrix(), evWant: Diagonal(0).Eigenvalues(), }, { a: Diagonal(10).Matrix(), evWant: Diagonal(10).Eigenvalues(), }, { a: Diagonal(50).Matrix(), evWant: Diagonal(50).Eigenvalues(), }, { a: Diagonal(151).Matrix(), evWant: Diagonal(151).Eigenvalues(), }, { a: Downshift(2).Matrix(), evWant: Downshift(2).Eigenvalues(), }, { a: Downshift(3).Matrix(), evWant: Downshift(3).Eigenvalues(), }, { a: Downshift(4).Matrix(), evWant: Downshift(4).Eigenvalues(), }, { a: Downshift(5).Matrix(), evWant: Downshift(5).Eigenvalues(), }, { a: Downshift(10).Matrix(), evWant: Downshift(10).Eigenvalues(), }, { a: Downshift(15).Matrix(), evWant: Downshift(15).Eigenvalues(), }, { a: Downshift(30).Matrix(), evWant: Downshift(30).Eigenvalues(), }, { a: Downshift(50).Matrix(), evWant: Downshift(50).Eigenvalues(), }, { a: Downshift(101).Matrix(), evWant: Downshift(101).Eigenvalues(), }, { a: Downshift(150).Matrix(), evWant: Downshift(150).Eigenvalues(), }, { a: Fibonacci(2).Matrix(), evWant: Fibonacci(2).Eigenvalues(), }, { a: Fibonacci(3).Matrix(), evWant: Fibonacci(3).Eigenvalues(), }, { a: Fibonacci(4).Matrix(), evWant: Fibonacci(4).Eigenvalues(), }, { a: Fibonacci(5).Matrix(), evWant: Fibonacci(5).Eigenvalues(), }, { a: Fibonacci(10).Matrix(), evWant: Fibonacci(10).Eigenvalues(), }, { a: Fibonacci(15).Matrix(), evWant: Fibonacci(15).Eigenvalues(), }, { a: Fibonacci(30).Matrix(), evWant: Fibonacci(30).Eigenvalues(), }, { a: Fibonacci(50).Matrix(), evWant: Fibonacci(50).Eigenvalues(), }, { a: Fibonacci(101).Matrix(), evWant: Fibonacci(101).Eigenvalues(), }, { a: Fibonacci(150).Matrix(), evWant: Fibonacci(150).Eigenvalues(), }, { a: Gear(2).Matrix(), evWant: Gear(2).Eigenvalues(), }, { a: Gear(3).Matrix(), evWant: Gear(3).Eigenvalues(), }, { a: Gear(4).Matrix(), evWant: Gear(4).Eigenvalues(), valTol: 1e-7, vecTol: 1e-8, }, { a: Gear(5).Matrix(), evWant: Gear(5).Eigenvalues(), }, { a: Gear(10).Matrix(), evWant: Gear(10).Eigenvalues(), valTol: 1e-8, }, { a: Gear(15).Matrix(), evWant: Gear(15).Eigenvalues(), }, { a: Gear(30).Matrix(), evWant: Gear(30).Eigenvalues(), valTol: 1e-8, }, { a: Gear(50).Matrix(), evWant: Gear(50).Eigenvalues(), valTol: 1e-8, }, { a: Gear(101).Matrix(), evWant: Gear(101).Eigenvalues(), }, { a: Gear(150).Matrix(), evWant: Gear(150).Eigenvalues(), valTol: 1e-8, }, { a: Grcar{N: 10, K: 3}.Matrix(), evWant: Grcar{N: 10, K: 3}.Eigenvalues(), }, { a: Grcar{N: 10, K: 7}.Matrix(), evWant: Grcar{N: 10, K: 7}.Eigenvalues(), }, { a: Grcar{N: 11, K: 7}.Matrix(), evWant: Grcar{N: 11, K: 7}.Eigenvalues(), }, { a: Grcar{N: 50, K: 3}.Matrix(), evWant: Grcar{N: 50, K: 3}.Eigenvalues(), }, { a: Grcar{N: 51, K: 3}.Matrix(), evWant: Grcar{N: 51, K: 3}.Eigenvalues(), }, { a: Grcar{N: 50, K: 10}.Matrix(), evWant: Grcar{N: 50, K: 10}.Eigenvalues(), }, { a: Grcar{N: 51, K: 10}.Matrix(), evWant: Grcar{N: 51, K: 10}.Eigenvalues(), }, { a: Grcar{N: 50, K: 30}.Matrix(), evWant: Grcar{N: 50, K: 30}.Eigenvalues(), }, { a: Grcar{N: 150, K: 2}.Matrix(), evWant: Grcar{N: 150, K: 2}.Eigenvalues(), }, { a: Grcar{N: 150, K: 148}.Matrix(), evWant: Grcar{N: 150, K: 148}.Eigenvalues(), }, { a: Hanowa{N: 6, Alpha: 17}.Matrix(), evWant: Hanowa{N: 6, Alpha: 17}.Eigenvalues(), }, { a: Hanowa{N: 50, Alpha: -1}.Matrix(), evWant: Hanowa{N: 50, Alpha: -1}.Eigenvalues(), }, { a: Hanowa{N: 100, Alpha: -1}.Matrix(), evWant: Hanowa{N: 100, Alpha: -1}.Eigenvalues(), }, { a: Lesp(2).Matrix(), evWant: Lesp(2).Eigenvalues(), }, { a: Lesp(3).Matrix(), evWant: Lesp(3).Eigenvalues(), }, { a: Lesp(4).Matrix(), evWant: Lesp(4).Eigenvalues(), }, { a: Lesp(5).Matrix(), evWant: Lesp(5).Eigenvalues(), }, { a: Lesp(10).Matrix(), evWant: Lesp(10).Eigenvalues(), }, { a: Lesp(15).Matrix(), evWant: Lesp(15).Eigenvalues(), }, { a: Lesp(30).Matrix(), evWant: Lesp(30).Eigenvalues(), }, { a: Lesp(50).Matrix(), evWant: Lesp(50).Eigenvalues(), valTol: 1e-12, }, { a: Lesp(101).Matrix(), evWant: Lesp(101).Eigenvalues(), valTol: 1e-12, }, { a: Lesp(150).Matrix(), evWant: Lesp(150).Eigenvalues(), valTol: 1e-12, }, { a: Rutis{}.Matrix(), evWant: Rutis{}.Eigenvalues(), }, { a: Tris{N: 74, X: 1, Y: -2, Z: 1}.Matrix(), evWant: Tris{N: 74, X: 1, Y: -2, Z: 1}.Eigenvalues(), }, { a: Tris{N: 74, X: 1, Y: 2, Z: -3}.Matrix(), evWant: Tris{N: 74, X: 1, Y: 2, Z: -3}.Eigenvalues(), }, { a: Tris{N: 75, X: 1, Y: 2, Z: -3}.Matrix(), evWant: Tris{N: 75, X: 1, Y: 2, Z: -3}.Eigenvalues(), }, { a: Wilk4{}.Matrix(), evWant: Wilk4{}.Eigenvalues(), }, { a: Wilk12{}.Matrix(), evWant: Wilk12{}.Eigenvalues(), valTol: 1e-7, }, { a: Wilk20(0).Matrix(), evWant: Wilk20(0).Eigenvalues(), }, { a: Wilk20(1e-10).Matrix(), evWant: Wilk20(1e-10).Eigenvalues(), valTol: 1e-12, }, { a: Zero(1).Matrix(), evWant: Zero(1).Eigenvalues(), }, { a: Zero(10).Matrix(), evWant: Zero(10).Eigenvalues(), }, { a: Zero(50).Matrix(), evWant: Zero(50).Eigenvalues(), }, { a: Zero(100).Matrix(), evWant: Zero(100).Eigenvalues(), }, } { for _, jobvl := range []lapack.LeftEVJob{lapack.LeftEVCompute, lapack.LeftEVNone} { for _, jobvr := range []lapack.RightEVJob{lapack.RightEVCompute, lapack.RightEVNone} { for _, extra := range []int{0, 11} { for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} { testDgeev(t, impl, strconv.Itoa(i), test, jobvl, jobvr, extra, wl) } } } } } for _, n := range []int{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 50, 51, 100, 101} { for _, jobvl := range []lapack.LeftEVJob{lapack.LeftEVCompute, lapack.LeftEVNone} { for _, jobvr := range []lapack.RightEVJob{lapack.RightEVCompute, lapack.RightEVNone} { for cas := 0; cas < 10; cas++ { // Create a block diagonal matrix with // random eigenvalues of random multiplicity. ev := make([]complex128, n) tmat := zeros(n, n, n) for i := 0; i < n; { re := rnd.NormFloat64() if i == n-1 || rnd.Float64() < 0.5 { // Real eigenvalue. nb := rnd.Intn(min(4, n-i)) + 1 for k := 0; k < nb; k++ { tmat.Data[i*tmat.Stride+i] = re ev[i] = complex(re, 0) i++ } continue } // Complex eigenvalue. im := rnd.NormFloat64() nb := rnd.Intn(min(4, (n-i)/2)) + 1 for k := 0; k < nb; k++ { // 2×2 block for the complex eigenvalue. tmat.Data[i*tmat.Stride+i] = re tmat.Data[(i+1)*tmat.Stride+i+1] = re tmat.Data[(i+1)*tmat.Stride+i] = -im tmat.Data[i*tmat.Stride+i+1] = im ev[i] = complex(re, im) ev[i+1] = complex(re, -im) i += 2 } } // Compute A = Q T Qᵀ where Q is an // orthogonal matrix. q := randomOrthogonal(n, rnd) tq := zeros(n, n, n) blas64.Gemm(blas.NoTrans, blas.Trans, 1, tmat, q, 0, tq) a := zeros(n, n, n) blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, q, tq, 0, a) test := dgeevTest{ a: a, evWant: ev, vecTol: 1e-7, } testDgeev(t, impl, "random", test, jobvl, jobvr, 0, optimumWork) } } } } } func testDgeev(t *testing.T, impl Dgeever, tc string, test dgeevTest, jobvl lapack.LeftEVJob, jobvr lapack.RightEVJob, extra int, wl worklen) { const defaultTol = 1e-13 valTol := test.valTol if valTol == 0 { valTol = defaultTol } vecTol := test.vecTol if vecTol == 0 { vecTol = defaultTol } a := cloneGeneral(test.a) n := a.Rows var vl blas64.General if jobvl == lapack.LeftEVCompute { vl = nanGeneral(n, n, n) } else { vl.Stride = 1 } var vr blas64.General if jobvr == lapack.RightEVCompute { vr = nanGeneral(n, n, n) } else { vr.Stride = 1 } wr := make([]float64, n) wi := make([]float64, n) var lwork int switch wl { case minimumWork: if jobvl == lapack.LeftEVCompute || jobvr == lapack.RightEVCompute { lwork = max(1, 4*n) } else { lwork = max(1, 3*n) } case mediumWork: work := make([]float64, 1) impl.Dgeev(jobvl, jobvr, n, a.Data, a.Stride, wr, wi, vl.Data, vl.Stride, vr.Data, vr.Stride, work, -1) if jobvl == lapack.LeftEVCompute || jobvr == lapack.RightEVCompute { lwork = (int(work[0]) + 4*n) / 2 } else { lwork = (int(work[0]) + 3*n) / 2 } lwork = max(1, lwork) case optimumWork: work := make([]float64, 1) impl.Dgeev(jobvl, jobvr, n, a.Data, a.Stride, wr, wi, vl.Data, vl.Stride, vr.Data, vr.Stride, work, -1) lwork = int(work[0]) } work := make([]float64, lwork) first := impl.Dgeev(jobvl, jobvr, n, a.Data, a.Stride, wr, wi, vl.Data, vl.Stride, vr.Data, vr.Stride, work, len(work)) prefix := fmt.Sprintf("Case #%v: n=%v, jobvl=%v, jobvr=%v, extra=%v, work=%v", tc, n, jobvl, jobvr, extra, wl) if !generalOutsideAllNaN(vl) { t.Errorf("%v: out-of-range write to VL", prefix) } if !generalOutsideAllNaN(vr) { t.Errorf("%v: out-of-range write to VR", prefix) } if first > 0 { t.Logf("%v: all eigenvalues haven't been computed, first=%v", prefix, first) } // Check that conjugate pair eigenvalues are ordered correctly. for i := first; i < n; { if wi[i] == 0 { i++ continue } if wr[i] != wr[i+1] { t.Errorf("%v: real parts of %vth conjugate pair not equal", prefix, i) } if wi[i] < 0 || wi[i+1] >= 0 { t.Errorf("%v: unexpected ordering of %vth conjugate pair", prefix, i) } i += 2 } // Check the computed eigenvalues against provided known eigenvalues. if test.evWant != nil { used := make([]bool, n) for i := first; i < n; i++ { evGot := complex(wr[i], wi[i]) idx := -1 for k, evWant := range test.evWant { if !used[k] && cmplx.Abs(evWant-evGot) < valTol { idx = k used[k] = true break } } if idx == -1 { t.Errorf("%v: unexpected eigenvalue %v", prefix, evGot) } } } if first > 0 || (jobvl == lapack.LeftEVNone && jobvr == lapack.RightEVNone) { // No eigenvectors have been computed. return } // Check that the columns of VL and VR are eigenvectors that: // - correspond to the computed eigenvalues // - have Euclidean norm equal to 1 // - have the largest component real bi := blas64.Implementation() if jobvr == lapack.RightEVCompute { resid := residualRightEV(test.a, vr, wr, wi) if resid > vecTol { t.Errorf("%v: unexpected right eigenvectors; residual=%v, want<=%v", prefix, resid, vecTol) } for j := 0; j < n; j++ { nrm := 1.0 if wi[j] == 0 { nrm = bi.Dnrm2(n, vr.Data[j:], vr.Stride) } else if wi[j] > 0 { nrm = math.Hypot(bi.Dnrm2(n, vr.Data[j:], vr.Stride), bi.Dnrm2(n, vr.Data[j+1:], vr.Stride)) } diff := math.Abs(nrm - 1) if diff > defaultTol { t.Errorf("%v: unexpected Euclidean norm of right eigenvector; |VR[%v]-1|=%v, want<=%v", prefix, j, diff, defaultTol) } if wi[j] > 0 { var vmax float64 // Largest component in the column var vrmax float64 // Largest real component in the column for i := 0; i < n; i++ { vtest := math.Hypot(vr.Data[i*vr.Stride+j], vr.Data[i*vr.Stride+j+1]) vmax = math.Max(vmax, vtest) if vr.Data[i*vr.Stride+j+1] == 0 { vrmax = math.Max(vrmax, math.Abs(vr.Data[i*vr.Stride+j])) } } if vrmax/vmax < 1-defaultTol { t.Errorf("%v: largest component of %vth right eigenvector is not real", prefix, j) } } } } if jobvl == lapack.LeftEVCompute { resid := residualLeftEV(test.a, vl, wr, wi) if resid > vecTol { t.Errorf("%v: unexpected left eigenvectors; residual=%v, want<=%v", prefix, resid, vecTol) } for j := 0; j < n; j++ { nrm := 1.0 if wi[j] == 0 { nrm = bi.Dnrm2(n, vl.Data[j:], vl.Stride) } else if wi[j] > 0 { nrm = math.Hypot(bi.Dnrm2(n, vl.Data[j:], vl.Stride), bi.Dnrm2(n, vl.Data[j+1:], vl.Stride)) } diff := math.Abs(nrm - 1) if diff > defaultTol { t.Errorf("%v: unexpected Euclidean norm of left eigenvector; |VL[%v]-1|=%v, want<=%v", prefix, j, diff, defaultTol) } if wi[j] > 0 { var vmax float64 // Largest component in the column var vrmax float64 // Largest real component in the column for i := 0; i < n; i++ { vtest := math.Hypot(vl.Data[i*vl.Stride+j], vl.Data[i*vl.Stride+j+1]) vmax = math.Max(vmax, vtest) if vl.Data[i*vl.Stride+j+1] == 0 { vrmax = math.Max(vrmax, math.Abs(vl.Data[i*vl.Stride+j])) } } if vrmax/vmax < 1-defaultTol { t.Errorf("%v: largest component of %vth left eigenvector is not real", prefix, j) } } } } } func dgeevTestForAntisymRandom(n int, rnd *rand.Rand) dgeevTest { a := NewAntisymRandom(n, rnd) return dgeevTest{ a: a.Matrix(), evWant: a.Eigenvalues(), } } // residualRightEV returns the residual // | A E - E W|_1 / ( |A|_1 |E|_1 ) // where the columns of E contain the right eigenvectors of A and W is a block diagonal matrix with // a 1×1 block for each real eigenvalue and a 2×2 block for each complex conjugate pair. func residualRightEV(a, e blas64.General, wr, wi []float64) float64 { // The implementation follows DGET22 routine from the Reference LAPACK's // testing suite. n := a.Rows if n == 0 { return 0 } bi := blas64.Implementation() ldr := n r := make([]float64, n*ldr) var ( wmat [4]float64 ipair int ) for j := 0; j < n; j++ { if ipair == 0 && wi[j] != 0 { ipair = 1 } switch ipair { case 0: // Real eigenvalue, multiply j-th column of E with it. bi.Daxpy(n, wr[j], e.Data[j:], e.Stride, r[j:], ldr) case 1: // First of complex conjugate pair of eigenvalues wmat[0], wmat[1] = wr[j], wi[j] wmat[2], wmat[3] = -wi[j], wr[j] bi.Dgemm(blas.NoTrans, blas.NoTrans, n, 2, 2, 1, e.Data[j:], e.Stride, wmat[:], 2, 0, r[j:], ldr) ipair = 2 case 2: // Second of complex conjugate pair of eigenvalues ipair = 0 } } bi.Dgemm(blas.NoTrans, blas.NoTrans, n, n, n, 1, a.Data, a.Stride, e.Data, e.Stride, -1, r, ldr) unfl := dlamchS ulp := dlamchE anorm := math.Max(dlange(lapack.MaxColumnSum, n, n, a.Data, a.Stride), unfl) enorm := math.Max(dlange(lapack.MaxColumnSum, n, n, e.Data, e.Stride), ulp) errnorm := dlange(lapack.MaxColumnSum, n, n, r, ldr) / enorm if anorm > errnorm { return errnorm / anorm } if anorm < 1 { return math.Min(errnorm, anorm) / anorm } return math.Min(errnorm/anorm, 1) } // residualLeftEV returns the residual // | Aᵀ E - E Wᵀ|_1 / ( |Aᵀ|_1 |E|_1 ) // where the columns of E contain the left eigenvectors of A and W is a block diagonal matrix with // a 1×1 block for each real eigenvalue and a 2×2 block for each complex conjugate pair. func residualLeftEV(a, e blas64.General, wr, wi []float64) float64 { // The implementation follows DGET22 routine from the Reference LAPACK's // testing suite. n := a.Rows if n == 0 { return 0 } bi := blas64.Implementation() ldr := n r := make([]float64, n*ldr) var ( wmat [4]float64 ipair int ) for j := 0; j < n; j++ { if ipair == 0 && wi[j] != 0 { ipair = 1 } switch ipair { case 0: // Real eigenvalue, multiply j-th column of E with it. bi.Daxpy(n, wr[j], e.Data[j:], e.Stride, r[j:], ldr) case 1: // First of complex conjugate pair of eigenvalues wmat[0], wmat[1] = wr[j], wi[j] wmat[2], wmat[3] = -wi[j], wr[j] bi.Dgemm(blas.NoTrans, blas.Trans, n, 2, 2, 1, e.Data[j:], e.Stride, wmat[:], 2, 0, r[j:], ldr) ipair = 2 case 2: // Second of complex conjugate pair of eigenvalues ipair = 0 } } bi.Dgemm(blas.Trans, blas.NoTrans, n, n, n, 1, a.Data, a.Stride, e.Data, e.Stride, -1, r, ldr) unfl := dlamchS ulp := dlamchE anorm := math.Max(dlange(lapack.MaxRowSum, n, n, a.Data, a.Stride), unfl) enorm := math.Max(dlange(lapack.MaxColumnSum, n, n, e.Data, e.Stride), ulp) errnorm := dlange(lapack.MaxColumnSum, n, n, r, ldr) / enorm if anorm > errnorm { return errnorm / anorm } if anorm < 1 { return math.Min(errnorm, anorm) / anorm } return math.Min(errnorm/anorm, 1) } func dlange(norm lapack.MatrixNorm, m, n int, a []float64, lda int) float64 { if m == 0 || n == 0 { return 0 } switch norm { case lapack.MaxAbs: var value float64 for i := 0; i < m; i++ { for j := 0; j < n; j++ { value = math.Max(value, math.Abs(a[i*lda+j])) } } return value case lapack.MaxColumnSum: work := make([]float64, n) for i := 0; i < m; i++ { for j := 0; j < n; j++ { work[j] += math.Abs(a[i*lda+j]) } } var value float64 for i := 0; i < n; i++ { value = math.Max(value, work[i]) } return value case lapack.MaxRowSum: var value float64 for i := 0; i < m; i++ { var sum float64 for j := 0; j < n; j++ { sum += math.Abs(a[i*lda+j]) } value = math.Max(value, sum) } return value case lapack.Frobenius: panic("not implemented") default: panic("bad MatrixNorm") } }