package search import ( "container/heap" gr "github.com/gonum/graph" ) type searchFuncs struct { successors, predecessors, neighbors func(gr.Node) []gr.Node isSuccessor, isPredecessor, isNeighbor func(gr.Node, gr.Node) bool cost, heuristicCost gr.CostFun } // Sets up the cost functions and successor functions so I don't have to do a type switch every time. // This almost always does more work than is necessary, but since it's only executed once per function, and graph functions are rather costly, the "extra work" // should be negligible. func setupFuncs(graph gr.Graph, cost, heuristicCost gr.CostFun) searchFuncs { sf := searchFuncs{} switch g := graph.(type) { case gr.DirectedGraph: sf.successors = g.Successors sf.predecessors = g.Predecessors sf.neighbors = g.Neighbors sf.isSuccessor = g.IsSuccessor sf.isPredecessor = g.IsPredecessor sf.isNeighbor = g.IsNeighbor default: sf.successors = g.Neighbors sf.predecessors = g.Neighbors sf.neighbors = g.Neighbors sf.isSuccessor = g.IsNeighbor sf.isPredecessor = g.IsNeighbor sf.isNeighbor = g.IsNeighbor } if heuristicCost != nil { sf.heuristicCost = heuristicCost } else { if g, ok := graph.(gr.HeuristicCoster); ok { sf.heuristicCost = g.HeuristicCost } else { sf.heuristicCost = NullHeuristic } } if cost != nil { sf.cost = cost } else { if g, ok := graph.(gr.Coster); ok { sf.cost = g.Cost } else { sf.cost = UniformCost } } return sf } /* Purely internal data structures and functions (mostly for sorting) */ // A package that contains an edge (as from EdgeList), and a Weight (as if Cost(Edge.Head(), Edge.Tail()) had been called) type WeightedEdge struct { gr.Edge Weight float64 } /** Sorts a list of edges by weight, agnostic to repeated edges as well as direction **/ type edgeSorter []WeightedEdge func (el edgeSorter) Len() int { return len(el) } func (el edgeSorter) Less(i, j int) bool { return el[i].Weight < el[j].Weight } func (el edgeSorter) Swap(i, j int) { el[i], el[j] = el[j], el[i] } /** Keeps track of a node's scores so they can be used in a priority queue for A* **/ type internalNode struct { gr.Node gscore, fscore float64 } /* A* stuff */ type aStarPriorityQueue struct { indexList map[int]int nodes []internalNode } func (pq *aStarPriorityQueue) Less(i, j int) bool { return pq.nodes[i].fscore < pq.nodes[j].fscore // As the heap documentation says, a priority queue is listed if the actual values are treated as if they were negative } func (pq *aStarPriorityQueue) Swap(i, j int) { pq.indexList[pq.nodes[i].ID()] = j pq.indexList[pq.nodes[j].ID()] = i pq.nodes[i], pq.nodes[j] = pq.nodes[j], pq.nodes[i] } func (pq *aStarPriorityQueue) Len() int { return len(pq.nodes) } func (pq *aStarPriorityQueue) Push(x interface{}) { node := x.(internalNode) pq.nodes = append(pq.nodes, node) pq.indexList[node.ID()] = len(pq.nodes) - 1 } func (pq *aStarPriorityQueue) Pop() interface{} { x := pq.nodes[len(pq.nodes)-1] pq.nodes = pq.nodes[:len(pq.nodes)-1] delete(pq.indexList, x.ID()) return x } func (pq *aStarPriorityQueue) Fix(id int, newGScore, newFScore float64) { if i, ok := pq.indexList[id]; ok { pq.nodes[i].gscore = newGScore pq.nodes[i].fscore = newFScore heap.Fix(pq, i) } } func (pq *aStarPriorityQueue) Find(id int) (internalNode, bool) { loc, ok := pq.indexList[id] if ok { return pq.nodes[loc], true } else { return internalNode{}, false } } func (pq *aStarPriorityQueue) Exists(id int) bool { _, ok := pq.indexList[id] return ok } // General utility funcs // Rebuilds a path backwards from the goal. func rebuildPath(predecessors map[int]gr.Node, goal gr.Node) []gr.Node { if n, ok := goal.(internalNode); ok { goal = n.Node } path := []gr.Node{goal} curr := goal for prev, ok := predecessors[curr.ID()]; ok; prev, ok = predecessors[curr.ID()] { if n, ok := prev.(internalNode); ok { prev = n.Node } path = append(path, prev) curr = prev } // Reverse the path since it was built backwards for i, j := 0, len(path)-1; i < j; i, j = i+1, j-1 { path[i], path[j] = path[j], path[i] } return path }