// Copyright ©2016 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package stat_test import ( "testing" "gonum.org/v1/gonum/floats" "gonum.org/v1/gonum/mat" "gonum.org/v1/gonum/stat" ) func TestCanonicalCorrelations(t *testing.T) { tests: for i, test := range []struct { xdata mat.Matrix ydata mat.Matrix weights []float64 wantCorrs []float64 wantpVecs *mat.Dense wantqVecs *mat.Dense wantphiVs *mat.Dense wantpsiVs *mat.Dense epsilon float64 }{ // Test results verified using R. { // Truncated iris data, Sepal vs Petal measurements. xdata: mat.NewDense(10, 2, []float64{ 5.1, 3.5, 4.9, 3.0, 4.7, 3.2, 4.6, 3.1, 5.0, 3.6, 5.4, 3.9, 4.6, 3.4, 5.0, 3.4, 4.4, 2.9, 4.9, 3.1, }), ydata: mat.NewDense(10, 2, []float64{ 1.4, 0.2, 1.4, 0.2, 1.3, 0.2, 1.5, 0.2, 1.4, 0.2, 1.7, 0.4, 1.4, 0.3, 1.5, 0.2, 1.4, 0.2, 1.5, 0.1, }), wantCorrs: []float64{0.7250624174504773, 0.5547679185730191}, wantpVecs: mat.NewDense(2, 2, []float64{ 0.0765914610875867, 0.9970625597666721, 0.9970625597666721, -0.0765914610875868, }), wantqVecs: mat.NewDense(2, 2, []float64{ 0.3075184850910837, 0.9515421069649439, 0.9515421069649439, -0.3075184850910837, }), wantphiVs: mat.NewDense(2, 2, []float64{ -1.9794877596804641, 5.2016325219025124, 4.5211829944066553, -2.7263663170835697, }), wantpsiVs: mat.NewDense(2, 2, []float64{ -0.0613084818030103, 10.8514169865438941, 12.7209032660734298, -7.6793888180353775, }), epsilon: 1e-12, }, // Test results compared to those results presented in examples by // Koch, Inge. Analysis of multivariate and high-dimensional data. // Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939 { // ASA Car Exposition Data of Ramos and Donoho (1983) // Displacement, Horsepower, Weight xdata: carData.Slice(0, 392, 0, 3), // Acceleration, MPG ydata: carData.Slice(0, 392, 3, 5), wantCorrs: []float64{0.8782187384352336, 0.6328187219216761}, wantpVecs: mat.NewDense(3, 2, []float64{ 0.3218296374829181, 0.3947540257657075, 0.4162807660635797, 0.7573719053303306, 0.8503740401982725, -0.5201509936144236, }), wantqVecs: mat.NewDense(2, 2, []float64{ -0.5161984172278830, -0.8564690269072364, -0.8564690269072364, 0.5161984172278830, }), wantphiVs: mat.NewDense(3, 2, []float64{ 0.0025033152994308, 0.0047795464118615, 0.0201923608080173, 0.0409150208725958, -0.0000247374128745, -0.0026766435161875, }), wantpsiVs: mat.NewDense(2, 2, []float64{ -0.1666196759760772, -0.3637393866139658, -0.0915512109649727, 0.1077863777929168, }), epsilon: 1e-12, }, // Test results compared to those results presented in examples by // Koch, Inge. Analysis of multivariate and high-dimensional data. // Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939 { // Boston Housing Data of Harrison and Rubinfeld (1978) // Per capita crime rate by town, // Proportion of non-retail business acres per town, // Nitric oxide concentration (parts per 10 million), // Weighted distances to Boston employment centres, // Index of accessibility to radial highways, // Pupil-teacher ratio by town, Proportion of blacks by town xdata: bostonData.Slice(0, 506, 0, 7), // Average number of rooms per dwelling, // Proportion of owner-occupied units built prior to 1940, // Full-value property-tax rate per $10000, // Median value of owner-occupied homes in $1000s ydata: bostonData.Slice(0, 506, 7, 11), wantCorrs: []float64{0.9451239443886021, 0.6786622733370654, 0.5714338361583764, 0.2009739704710440}, wantpVecs: mat.NewDense(7, 4, []float64{ -0.2574391924541903, 0.0158477516621194, 0.2122169934631024, -0.0945733803894706, -0.4836594430018478, 0.3837101908138468, 0.1474448317415911, 0.6597324886718275, -0.0800776365873296, 0.3493556742809252, 0.3287336458109373, -0.2862040444334655, 0.1277586360386374, -0.7337427663667596, 0.4851134819037011, 0.2247964865970192, -0.6969432006136684, -0.4341748776002893, -0.3602872887636357, 0.0290661608626292, -0.0990903250057199, 0.0503411215453873, 0.6384330631742202, 0.1022367136218303, 0.4260459963765036, 0.0323334351308141, -0.2289527516030810, 0.6419232947608805, }), wantqVecs: mat.NewDense(4, 4, []float64{ 0.0181660502363264, -0.1583489460479038, -0.0066723577642883, -0.9871935400650649, -0.2347699045986119, 0.9483314614936594, -0.1462420505631345, -0.1554470767919033, -0.9700704038477141, -0.2406071741000039, -0.0251838984227037, 0.0209134074358349, 0.0593000682318482, -0.1330460003097728, -0.9889057151969489, 0.0291161494720761, }), wantphiVs: mat.NewDense(7, 4, []float64{ -0.0027462234108197, 0.0093444513500898, 0.0489643932714296, -0.0154967189805819, -0.0428564455279537, -0.0241708702119420, 0.0360723472093996, 0.1838983230588095, -1.2248435648802380, 5.6030921364723980, 5.8094144583797025, -4.7926812190419676, -0.0043684825094649, -0.3424101164977618, 0.4469961215717917, 0.1150161814353696, -0.0741534069521954, -0.1193135794923700, -0.1115518305471460, 0.0021638758323088, -0.0233270323101624, 0.1046330818178399, 0.3853045975077387, -0.0160927870102877, 0.0001293051387859, 0.0004540746921446, -0.0030296315865440, 0.0081895477974654, }), wantpsiVs: mat.NewDense(4, 4, []float64{ 0.0301593362017375, -0.3002219289647127, 0.0878217377593682, -1.9583226531517062, -0.0065483104073892, 0.0392212086716247, -0.0117570776209991, -0.0061113064481860, -0.0052075523350125, -0.0045770200452960, -0.0022762313289592, 0.0008441873006821, 0.0020111735096327, 0.0037352799829930, -0.1292578071621794, 0.1037709056329765, }), epsilon: 1e-12, }, } { var cc stat.CC var corrs []float64 var pVecs, qVecs *mat.Dense var phiVs, psiVs *mat.Dense for j := 0; j < 2; j++ { err := cc.CanonicalCorrelations(test.xdata, test.ydata, test.weights) if err != nil { t.Errorf("%d use %d: unexpected error: %v", i, j, err) continue tests } corrs = cc.CorrsTo(corrs) pVecs = cc.LeftTo(pVecs, true) qVecs = cc.RightTo(qVecs, true) phiVs = cc.LeftTo(phiVs, false) psiVs = cc.RightTo(psiVs, false) if !floats.EqualApprox(corrs, test.wantCorrs, test.epsilon) { t.Errorf("%d use %d: unexpected variance result got:%v, want:%v", i, j, corrs, test.wantCorrs) } if !mat.EqualApprox(pVecs, test.wantpVecs, test.epsilon) { t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", i, j, mat.Formatted(pVecs), mat.Formatted(test.wantpVecs)) } if !mat.EqualApprox(qVecs, test.wantqVecs, test.epsilon) { t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", i, j, mat.Formatted(qVecs), mat.Formatted(test.wantqVecs)) } if !mat.EqualApprox(phiVs, test.wantphiVs, test.epsilon) { t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", i, j, mat.Formatted(phiVs), mat.Formatted(test.wantphiVs)) } if !mat.EqualApprox(psiVs, test.wantpsiVs, test.epsilon) { t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", i, j, mat.Formatted(psiVs), mat.Formatted(test.wantpsiVs)) } } } }