// Copyright ©2016 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package stat_test import ( "fmt" "log" "gonum.org/v1/gonum/floats" "gonum.org/v1/gonum/mat" "gonum.org/v1/gonum/stat" ) // symView is a helper for getting a View of a SymDense. type symView struct { sym *mat.SymDense i, j, r, c int } func (s symView) Dims() (r, c int) { return s.r, s.c } func (s symView) At(i, j int) float64 { if i < 0 || s.r <= i { panic("i out of bounds") } if j < 0 || s.c <= j { panic("j out of bounds") } return s.sym.At(s.i+i, s.j+j) } func (s symView) T() mat.Matrix { return mat.Transpose{s} } func ExampleCC() { // This example is directly analogous to Example 3.5 on page 87 of // Koch, Inge. Analysis of multivariate and high-dimensional data. // Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939 // bostonData is the Boston Housing Data of Harrison and Rubinfeld (1978) n, _ := bostonData.Dims() var xd, yd = 7, 4 // The variables (columns) of bostonData can be partitioned into two sets: // those that deal with environmental/social variables (xdata), and those // that contain information regarding the individual (ydata). Because the // variables can be naturally partitioned in this way, these data are // appropriate for canonical correlation analysis. The columns (variables) // of xdata are, in order: // per capita crime rate by town, // proportion of non-retail business acres per town, // nitric oxide concentration (parts per 10 million), // weighted distances to Boston employment centres, // index of accessibility to radial highways, // pupil-teacher ratio by town, and // proportion of blacks by town. xdata := bostonData.Slice(0, n, 0, xd) // The columns (variables) of ydata are, in order: // average number of rooms per dwelling, // proportion of owner-occupied units built prior to 1940, // full-value property-tax rate per $10000, and // median value of owner-occupied homes in $1000s. ydata := bostonData.Slice(0, n, xd, xd+yd) // For comparison, calculate the correlation matrix for the original data. var cor mat.SymDense stat.CorrelationMatrix(&cor, bostonData, nil) // Extract just those correlations that are between xdata and ydata. var corRaw = symView{sym: &cor, i: 0, j: xd, r: xd, c: yd} // Note that the strongest correlation between individual variables is 0.91 // between the 5th variable of xdata (index of accessibility to radial // highways) and the 3rd variable of ydata (full-value property-tax rate per // $10000). fmt.Printf("corRaw = %.4f", mat.Formatted(corRaw, mat.Prefix(" "))) // Calculate the canonical correlations. var cc stat.CC err := cc.CanonicalCorrelations(xdata, ydata, nil) if err != nil { log.Fatal(err) } // Unpack cc. ccors := cc.CorrsTo(nil) pVecs := cc.LeftTo(nil, true) qVecs := cc.RightTo(nil, true) phiVs := cc.LeftTo(nil, false) psiVs := cc.RightTo(nil, false) // Canonical Correlation Matrix, or the correlations between the sphered // data. var corSph mat.Dense corSph.Clone(pVecs) col := make([]float64, xd) for j := 0; j < yd; j++ { mat.Col(col, j, &corSph) floats.Scale(ccors[j], col) corSph.SetCol(j, col) } corSph.Product(&corSph, qVecs.T()) fmt.Printf("\n\ncorSph = %.4f", mat.Formatted(&corSph, mat.Prefix(" "))) // Canonical Correlations. Note that the first canonical correlation is // 0.95, stronger than the greatest correlation in the original data, and // much stronger than the greatest correlation in the sphered data. fmt.Printf("\n\nccors = %.4f", ccors) // Left and right eigenvectors of the canonical correlation matrix. fmt.Printf("\n\npVecs = %.4f", mat.Formatted(pVecs, mat.Prefix(" "))) fmt.Printf("\n\nqVecs = %.4f", mat.Formatted(qVecs, mat.Prefix(" "))) // Canonical Correlation Transforms. These can be useful as they represent // the canonical variables as linear combinations of the original variables. fmt.Printf("\n\nphiVs = %.4f", mat.Formatted(phiVs, mat.Prefix(" "))) fmt.Printf("\n\npsiVs = %.4f", mat.Formatted(psiVs, mat.Prefix(" "))) // Output: // corRaw = ⎡-0.2192 0.3527 0.5828 -0.3883⎤ // ⎢-0.3917 0.6448 0.7208 -0.4837⎥ // ⎢-0.3022 0.7315 0.6680 -0.4273⎥ // ⎢ 0.2052 -0.7479 -0.5344 0.2499⎥ // ⎢-0.2098 0.4560 0.9102 -0.3816⎥ // ⎢-0.3555 0.2615 0.4609 -0.5078⎥ // ⎣ 0.1281 -0.2735 -0.4418 0.3335⎦ // // corSph = ⎡ 0.0118 0.0525 0.2300 -0.1363⎤ // ⎢-0.1810 0.3213 0.3814 -0.1412⎥ // ⎢ 0.0166 0.2241 0.0104 -0.2235⎥ // ⎢ 0.0346 -0.5481 -0.0034 -0.1994⎥ // ⎢ 0.0303 -0.0956 0.7152 0.2039⎥ // ⎢-0.0298 -0.0022 0.0739 -0.3703⎥ // ⎣-0.1226 -0.0746 -0.3899 0.1541⎦ // // ccors = [0.9451 0.6787 0.5714 0.2010] // // pVecs = ⎡-0.2574 0.0158 0.2122 -0.0946⎤ // ⎢-0.4837 0.3837 0.1474 0.6597⎥ // ⎢-0.0801 0.3494 0.3287 -0.2862⎥ // ⎢ 0.1278 -0.7337 0.4851 0.2248⎥ // ⎢-0.6969 -0.4342 -0.3603 0.0291⎥ // ⎢-0.0991 0.0503 0.6384 0.1022⎥ // ⎣ 0.4260 0.0323 -0.2290 0.6419⎦ // // qVecs = ⎡ 0.0182 -0.1583 -0.0067 -0.9872⎤ // ⎢-0.2348 0.9483 -0.1462 -0.1554⎥ // ⎢-0.9701 -0.2406 -0.0252 0.0209⎥ // ⎣ 0.0593 -0.1330 -0.9889 0.0291⎦ // // phiVs = ⎡-0.0027 0.0093 0.0490 -0.0155⎤ // ⎢-0.0429 -0.0242 0.0361 0.1839⎥ // ⎢-1.2248 5.6031 5.8094 -4.7927⎥ // ⎢-0.0044 -0.3424 0.4470 0.1150⎥ // ⎢-0.0742 -0.1193 -0.1116 0.0022⎥ // ⎢-0.0233 0.1046 0.3853 -0.0161⎥ // ⎣ 0.0001 0.0005 -0.0030 0.0082⎦ // // psiVs = ⎡ 0.0302 -0.3002 0.0878 -1.9583⎤ // ⎢-0.0065 0.0392 -0.0118 -0.0061⎥ // ⎢-0.0052 -0.0046 -0.0023 0.0008⎥ // ⎣ 0.0020 0.0037 -0.1293 0.1038⎦ }