// Copyright ©2016 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // package lp implements routines for solving linear programs. package lp import ( "errors" "fmt" "math" "gonum.org/v1/gonum/floats" "gonum.org/v1/gonum/mat" ) // TODO(btracey): Could have a solver structure with an abstract factorizer. With // this transformation the same high-level code could handle both Dense and Sparse. // TODO(btracey): Need to improve error handling. Only want to panic if condition number inf. // TODO(btracey): Performance enhancements. There are currently lots of linear // solves that can be improved by doing rank-one updates. For example, the swap // step is just a rank-one update. // TODO(btracey): Better handling on the linear solve errors. If the condition // number is not inf and the equation solved "well", should keep moving. var ( ErrBland = errors.New("lp: bland: all replacements are negative or cause ill-conditioned ab") ErrInfeasible = errors.New("lp: problem is infeasible") ErrLinSolve = errors.New("lp: linear solve failure") ErrUnbounded = errors.New("lp: problem is unbounded") ErrSingular = errors.New("lp: A is singular") ErrZeroColumn = errors.New("lp: A has a column of all zeros") ErrZeroRow = errors.New("lp: A has a row of all zeros") ) var ( badShape = "lp: size mismatch" ) // TODO(btracey): Should these tolerances be part of a settings struct? const ( // initPosTol is the tolerance on the initial condition being feasible. Strictly, // the x should be positive, but instead it must be greater than -initPosTol. initPosTol = 1e-13 // blandNegTol is the tolerance on the value being greater than 0 in the bland test. blandNegTol = 1e-14 // rRoundTol is the tolerance for rounding values to zero when testing if // constraints are met. rRoundTol = 1e-13 // dRoundTol is the tolerance for testing if values are zero for the problem // being unbounded. dRoundTol = 1e-13 // phaseIZeroTol tests if the Phase I problem returned a feasible solution. phaseIZeroTol = 1e-12 // blandZeroTol is the tolerance on testing if the bland solution can move. blandZeroTol = 1e-12 ) // Simplex solves a linear program in standard form using Danzig's Simplex // algorithm. The standard form of a linear program is: // minimize c^T x // s.t. A*x = b // x >= 0 . // The input tol sets how close to the optimal solution is found (specifically, // when the maximal reduced cost is below tol). An error will be returned if the // problem is infeasible or unbounded. In rare cases, numeric errors can cause // the Simplex to fail. In this case, an error will be returned along with the // most recently found feasible solution. // // The Convert function can be used to transform a general LP into standard form. // // The input matrix A must have full rank and may not contain any columns with // all zeros. Furthermore, len(c) must equal the number of columns of A, and len(b) // must equal the number of rows of A. Simplex will panic if these conditions are // not met. // // initialBasic can be used to set the initial set of indices for a feasible // solution to the LP. If an initial feasible solution is not known, initialBasic // may be nil. If initialBasic is non-nil, len(initialBasic) must equal the number // of rows of A and must be an actual feasible solution to the LP, otherwise // Simplex will panic. // // A description of the Simplex algorithm can be found in Ch. 8 of // Strang, Gilbert. "Linear Algebra and Applications." Academic, New York (1976). // For a detailed video introduction, see lectures 11-13 of UC Math 352 // https://www.youtube.com/watch?v=ESzYPFkY3og&index=11&list=PLh464gFUoJWOmBYla3zbZbc4nv2AXez6X. func Simplex(c []float64, A mat.Matrix, b []float64, tol float64, initialBasic []int) (optF float64, optX []float64, err error) { ans, x, _, err := simplex(initialBasic, c, A, b, tol) return ans, x, err } func simplex(initialBasic []int, c []float64, A mat.Matrix, b []float64, tol float64) (float64, []float64, []int, error) { err := verifyInputs(initialBasic, c, A, b) if err != nil { if err == ErrUnbounded { return math.Inf(-1), nil, nil, ErrUnbounded } return math.NaN(), nil, nil, err } m, n := A.Dims() // There is at least one optimal solution to the LP which is at the intersection // to a set of constraint boundaries. For a standard form LP with m variables // and n equality constraints, at least m-n elements of x must equal zero // at optimality. The Simplex algorithm solves the standard-form LP by starting // at an initial constraint vertex and successively moving to adjacent constraint // vertices. At every vertex, the set of non-zero x values is the "basic // feasible solution". The list of non-zero x's are maintained in basicIdxs, // the respective columns of A are in ab, and the actual non-zero values of // x are in xb. // // The LP is equality constrained such that A * x = b. This can be expanded // to // ab * xb + an * xn = b // where ab are the columns of a in the basic set, and an are all of the // other columns. Since each element of xn is zero by definition, this means // that for all feasible solutions xb = ab^-1 * b. // // Before the simplex algorithm can start, an initial feasible solution must // be found. If initialBasic is non-nil a feasible solution has been supplied. // Otherwise the "Phase I" problem must be solved to find an initial feasible // solution. var basicIdxs []int // The indices of the non-zero x values. var ab *mat.Dense // The subset of columns of A listed in basicIdxs. var xb []float64 // The non-zero elements of x. xb = ab^-1 b if initialBasic != nil { // InitialBasic supplied. Panic if incorrect length or infeasible. if len(initialBasic) != m { panic("lp: incorrect number of initial vectors") } ab = mat.NewDense(m, len(initialBasic), nil) extractColumns(ab, A, initialBasic) xb = make([]float64, m) err = initializeFromBasic(xb, ab, b) if err != nil { panic(err) } basicIdxs = make([]int, len(initialBasic)) copy(basicIdxs, initialBasic) } else { // No initial basis supplied. Solve the PhaseI problem. basicIdxs, ab, xb, err = findInitialBasic(A, b) if err != nil { return math.NaN(), nil, nil, err } } // basicIdxs contains the indexes for an initial feasible solution, // ab contains the extracted columns of A, and xb contains the feasible // solution. All x not in the basic set are 0 by construction. // nonBasicIdx is the set of nonbasic variables. nonBasicIdx := make([]int, 0, n-m) inBasic := make(map[int]struct{}) for _, v := range basicIdxs { inBasic[v] = struct{}{} } for i := 0; i < n; i++ { _, ok := inBasic[i] if !ok { nonBasicIdx = append(nonBasicIdx, i) } } // cb is the subset of c for the basic variables. an and cn // are the equivalents to ab and cb but for the nonbasic variables. cb := make([]float64, len(basicIdxs)) for i, idx := range basicIdxs { cb[i] = c[idx] } cn := make([]float64, len(nonBasicIdx)) for i, idx := range nonBasicIdx { cn[i] = c[idx] } an := mat.NewDense(m, len(nonBasicIdx), nil) extractColumns(an, A, nonBasicIdx) bVec := mat.NewVector(len(b), b) cbVec := mat.NewVector(len(cb), cb) // Temporary data needed each iteration. (Described later) r := make([]float64, n-m) move := make([]float64, m) // Solve the linear program starting from the initial feasible set. This is // the "Phase 2" problem. // // Algorithm: // 1) Compute the "reduced costs" for the non-basic variables. The reduced // costs are the lagrange multipliers of the constraints. // r = cn - an^T * ab^-T * cb // 2) If all of the reduced costs are positive, no improvement is possible, // and the solution is optimal (xn can only increase because of // non-negativity constraints). Otherwise, the solution can be improved and // one element will be exchanged in the basic set. // 3) Choose the x_n with the most negative value of r. Call this value xe. // This variable will be swapped into the basic set. // 4) Increase xe until the next constraint boundary is met. This will happen // when the first element in xb becomes 0. The distance xe can increase before // a given element in xb becomes negative can be found from // xb = Ab^-1 b - Ab^-1 An xn // = Ab^-1 b - Ab^-1 Ae xe // = bhat + d x_e // xe = bhat_i / - d_i // where Ae is the column of A corresponding to xe. // The constraining basic index is the first index for which this is true, // so remove the element which is min_i (bhat_i / -d_i), assuming d_i is negative. // If no d_i is less than 0, then the problem is unbounded. // 5) If the new xe is 0 (that is, bhat_i == 0), then this location is at // the intersection of several constraints. Use the Bland rule instead // of the rule in step 4 to avoid cycling. for { // Compute reduced costs -- r = cn - an^T ab^-T cb var tmp mat.Vector err = tmp.SolveVec(ab.T(), cbVec) if err != nil { break } data := make([]float64, n-m) tmp2 := mat.NewVector(n-m, data) tmp2.MulVec(an.T(), &tmp) floats.SubTo(r, cn, data) // Replace the most negative element in the simplex. If there are no // negative entries then the optimal solution has been found. minIdx := floats.MinIdx(r) if r[minIdx] >= -tol { break } for i, v := range r { if math.Abs(v) < rRoundTol { r[i] = 0 } } // Compute the moving distance. err = computeMove(move, minIdx, A, ab, xb, nonBasicIdx) if err != nil { if err == ErrUnbounded { return math.Inf(-1), nil, nil, ErrUnbounded } break } // Replace the basic index along the tightest constraint. replace := floats.MinIdx(move) if move[replace] <= 0 { replace, minIdx, err = replaceBland(A, ab, xb, basicIdxs, nonBasicIdx, r, move) if err != nil { if err == ErrUnbounded { return math.Inf(-1), nil, nil, ErrUnbounded } break } } // Replace the constrained basicIdx with the newIdx. basicIdxs[replace], nonBasicIdx[minIdx] = nonBasicIdx[minIdx], basicIdxs[replace] cb[replace], cn[minIdx] = cn[minIdx], cb[replace] tmpCol1 := mat.Col(nil, replace, ab) tmpCol2 := mat.Col(nil, minIdx, an) ab.SetCol(replace, tmpCol2) an.SetCol(minIdx, tmpCol1) // Compute the new xb. xbVec := mat.NewVector(len(xb), xb) err = xbVec.SolveVec(ab, bVec) if err != nil { break } } // Found the optimum successfully or died trying. The basic variables get // their values, and the non-basic variables are all zero. opt := floats.Dot(cb, xb) xopt := make([]float64, n) for i, v := range basicIdxs { xopt[v] = xb[i] } return opt, xopt, basicIdxs, err } // computeMove computes how far can be moved replacing each index. The results // are stored into move. func computeMove(move []float64, minIdx int, A mat.Matrix, ab *mat.Dense, xb []float64, nonBasicIdx []int) error { // Find ae. col := mat.Col(nil, nonBasicIdx[minIdx], A) aCol := mat.NewVector(len(col), col) // d = - Ab^-1 Ae nb, _ := ab.Dims() d := make([]float64, nb) dVec := mat.NewVector(nb, d) err := dVec.SolveVec(ab, aCol) if err != nil { return ErrLinSolve } floats.Scale(-1, d) for i, v := range d { if math.Abs(v) < dRoundTol { d[i] = 0 } } // If no di < 0, then problem is unbounded. if floats.Min(d) >= 0 { return ErrUnbounded } // move = bhat_i / - d_i, assuming d is negative. bHat := xb // ab^-1 b for i, v := range d { if v >= 0 { move[i] = math.Inf(1) } else { move[i] = bHat[i] / math.Abs(v) } } return nil } // replaceBland uses the Bland rule to find the indices to swap if the minimum // move is 0. The indices to be swapped are replace and minIdx (following the // nomenclature in the main routine). func replaceBland(A mat.Matrix, ab *mat.Dense, xb []float64, basicIdxs, nonBasicIdx []int, r, move []float64) (replace, minIdx int, err error) { m, _ := A.Dims() // Use the traditional bland rule, except don't replace a constraint which // causes the new ab to be singular. for i, v := range r { if v > -blandNegTol { continue } minIdx = i err = computeMove(move, minIdx, A, ab, xb, nonBasicIdx) if err != nil { // Either unbounded or something went wrong. return -1, -1, err } replace = floats.MinIdx(move) if math.Abs(move[replace]) > blandZeroTol { // Large enough that it shouldn't be a problem return replace, minIdx, nil } // Find a zero index where replacement is non-singular. biCopy := make([]int, len(basicIdxs)) for replace, v := range move { if v > blandZeroTol { continue } copy(biCopy, basicIdxs) biCopy[replace] = nonBasicIdx[minIdx] abTmp := mat.NewDense(m, len(biCopy), nil) extractColumns(abTmp, A, biCopy) // If the condition number is reasonable, use this index. if mat.Cond(abTmp, 1) < 1e16 { return replace, minIdx, nil } } } return -1, -1, ErrBland } func verifyInputs(initialBasic []int, c []float64, A mat.Matrix, b []float64) error { m, n := A.Dims() if len(c) != n { panic("lp: c vector incorrect length") } if len(b) != m { panic("lp: b vector incorrect length") } if len(c) != n { panic("lp: c vector incorrect length") } if len(initialBasic) != 0 && len(initialBasic) != m { panic("lp: initialBasic incorrect length") } // Do some sanity checks so that ab does not become singular during the // simplex solution. If the ZeroRow checks are removed then the code for // finding a set of linearly indepent columns must be improved. // Check that if a row of A only has zero elements that corresponding // element in b is zero, otherwise the problem is infeasible. // Otherwise return ErrZeroRow. for i := 0; i < m; i++ { isZero := true for j := 0; j < n; j++ { if A.At(i, j) != 0 { isZero = false break } } if isZero && b[i] != 0 { // Infeasible return ErrInfeasible } else if isZero { return ErrZeroRow } } // Check that if a column only has zero elements that the respective C vector // is positive (otherwise unbounded). Otherwise return ErrZeroColumn. for j := 0; j < n; j++ { isZero := true for i := 0; i < m; i++ { if A.At(i, j) != 0 { isZero = false break } } if isZero && c[j] < 0 { return ErrUnbounded } else if isZero { return ErrZeroColumn } } return nil } // initializeFromBasic initializes the basic feasible solution given a set of // basic indices. It extracts the columns of A specified by basicIdxs and finds // the x values at that location. These are stored into xb. // // If the columns of A are not linearly independent or if the initial set is not // feasible, an error is returned. func initializeFromBasic(xb []float64, ab *mat.Dense, b []float64) error { m, _ := ab.Dims() if len(xb) != m { panic("simplex: bad xb length") } xbMat := mat.NewVector(m, xb) err := xbMat.SolveVec(ab, mat.NewVector(m, b)) if err != nil { return errors.New("lp: subcolumns of A for supplied initial basic singular") } // The solve ensures that the equality constraints are met (ab * xb = b). // Thus, the solution is feasible if and only if all of the x's are positive. allPos := true for _, v := range xb { if v < -initPosTol { allPos = false break } } if !allPos { return errors.New("lp: supplied subcolumns not a feasible solution") } return nil } // extractColumns copies the columns specified by cols into the columns of dst. func extractColumns(dst *mat.Dense, A mat.Matrix, cols []int) { r, c := dst.Dims() ra, _ := A.Dims() if ra != r { panic("simplex: row mismatch") } if c != len(cols) { panic("simplex: column mismatch") } col := make([]float64, r) for j, idx := range cols { mat.Col(col, idx, A) dst.SetCol(j, col) } } // findInitialBasic finds an initial basic solution, and returns the basic // indices, ab, and xb. func findInitialBasic(A mat.Matrix, b []float64) ([]int, *mat.Dense, []float64, error) { m, n := A.Dims() basicIdxs := findLinearlyIndependent(A) if len(basicIdxs) != m { return nil, nil, nil, ErrSingular } // It may be that this linearly independent basis is also a feasible set. If // so, the Phase I problem can be avoided. ab := mat.NewDense(m, len(basicIdxs), nil) extractColumns(ab, A, basicIdxs) xb := make([]float64, m) err := initializeFromBasic(xb, ab, b) if err == nil { return basicIdxs, ab, xb, nil } // This set was not feasible. Instead the "Phase I" problem must be solved // to find an initial feasible set of basis. // // Method: Construct an LP whose optimal solution is a feasible solution // to the original LP. // 1) Introduce an artificial variable x_{n+1}. // 2) Let x_j be the most negative element of x_b (largest constraint violation). // 3) Add the artificial variable to A with: // a_{n+1} = b - \sum_{i in basicIdxs} a_i + a_j // swap j with n+1 in the basicIdxs. // 4) Define a new LP: // minimize x_{n+1} // subject to [A A_{n+1}][x_1 ... x_{n+1}] = b // x, x_{n+1} >= 0 // 5) Solve this LP. If x_{n+1} != 0, then the problem is infeasible, otherwise // the found basis can be used as an initial basis for phase II. // // The extra column in Step 3 is defined such that the vector of 1s is an // initial feasible solution. // Find the largest constraint violator. // Compute a_{n+1} = b - \sum{i in basicIdxs}a_i + a_j. j is in basicIDx, so // instead just subtract the basicIdx columns that are not minIDx. minIdx := floats.MinIdx(xb) aX1 := make([]float64, m) copy(aX1, b) col := make([]float64, m) for i, v := range basicIdxs { if i == minIdx { continue } mat.Col(col, v, A) floats.Sub(aX1, col) } // Construct the new LP. // aNew = [A, a_{n+1}] // bNew = b // cNew = 1 for x_{n+1} aNew := mat.NewDense(m, n+1, nil) aNew.Copy(A) aNew.SetCol(n, aX1) basicIdxs[minIdx] = n // swap minIdx with n in the basic set. c := make([]float64, n+1) c[n] = 1 // Solve the Phase I linear program. _, xOpt, newBasic, err := simplex(basicIdxs, c, aNew, b, 1e-10) if err != nil { return nil, nil, nil, fmt.Errorf("lp: error finding feasible basis: %s", err) } // The original LP is infeasible if the added variable has non-zero value // in the optimal solution to the Phase I problem. if math.Abs(xOpt[n]) > phaseIZeroTol { return nil, nil, nil, ErrInfeasible } // The basis found in Phase I is a feasible solution to the original LP if // the added variable is not in the basis. addedIdx := -1 for i, v := range newBasic { if v == n { addedIdx = i } xb[i] = xOpt[v] } if addedIdx == -1 { extractColumns(ab, A, newBasic) return newBasic, ab, xb, nil } // The value of the added variable is in the basis, but it has a zero value. // See if exchanging another variable into the basic set finds a feasible // solution. basicMap := make(map[int]struct{}) for _, v := range newBasic { basicMap[v] = struct{}{} } var set bool for i := range xOpt { if _, inBasic := basicMap[i]; inBasic { continue } newBasic[addedIdx] = i if set { mat.Col(col, i, A) ab.SetCol(addedIdx, col) } else { extractColumns(ab, A, newBasic) set = true } err := initializeFromBasic(xb, ab, b) if err == nil { return newBasic, ab, xb, nil } } return nil, nil, nil, ErrInfeasible } // findLinearlyIndependnt finds a set of linearly independent columns of A, and // returns the column indexes of the linearly independent columns. func findLinearlyIndependent(A mat.Matrix) []int { m, n := A.Dims() idxs := make([]int, 0, m) columns := mat.NewDense(m, m, nil) newCol := make([]float64, m) // Walk in reverse order because slack variables are typically the last columns // of A. for i := n - 1; i >= 0; i-- { if len(idxs) == m { break } mat.Col(newCol, i, A) columns.SetCol(len(idxs), newCol) if len(idxs) == 0 { // A column is linearly independent from the null set. // If all-zero column of A are allowed, this code needs to be adjusted. idxs = append(idxs, i) continue } if mat.Cond(columns.Slice(0, m, 0, len(idxs)+1), 1) > 1e12 { // Not linearly independent. continue } idxs = append(idxs, i) } return idxs }