// Copyright ©2017 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package fd import "gonum.org/v1/gonum/mat" // Watson implements the Watson's function. // Dimension of the problem should be 2 <= dim <= 31. For dim == 9, the problem // of minimizing the function is very ill conditioned. // // This is copied from gonum.org/v1/optimize/functions for testing Hessian-like // derivative methods. // // References: // - Kowalik, J.S., Osborne, M.R.: Methods for Unconstrained Optimization // Problems. Elsevier North-Holland, New York, 1968 // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type Watson struct{} func (Watson) Func(x []float64) (sum float64) { for i := 1; i <= 29; i++ { d1 := float64(i) / 29 d2 := 1.0 var s1 float64 for j := 1; j < len(x); j++ { s1 += float64(j) * d2 * x[j] d2 *= d1 } d2 = 1.0 var s2 float64 for _, v := range x { s2 += d2 * v d2 *= d1 } t := s1 - s2*s2 - 1 sum += t * t } t := x[1] - x[0]*x[0] - 1 sum += x[0]*x[0] + t*t return sum } func (Watson) Grad(grad, x []float64) { if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := range grad { grad[i] = 0 } for i := 1; i <= 29; i++ { d1 := float64(i) / 29 d2 := 1.0 var s1 float64 for j := 1; j < len(x); j++ { s1 += float64(j) * d2 * x[j] d2 *= d1 } d2 = 1.0 var s2 float64 for _, v := range x { s2 += d2 * v d2 *= d1 } t := s1 - s2*s2 - 1 s3 := 2 * d1 * s2 d2 = 2 / d1 for j := range x { grad[j] += d2 * (float64(j) - s3) * t d2 *= d1 } } t := x[1] - x[0]*x[0] - 1 grad[0] += x[0] * (2 - 4*t) grad[1] += 2 * t } func (Watson) Hess(hess mat.MutableSymmetric, x []float64) { dim := len(x) if dim != hess.Symmetric() { panic("incorrect size of the Hessian") } for j := 0; j < dim; j++ { for k := j; k < dim; k++ { hess.SetSym(j, k, 0) } } for i := 1; i <= 29; i++ { d1 := float64(i) / 29 d2 := 1.0 var s1 float64 for j := 1; j < dim; j++ { s1 += float64(j) * d2 * x[j] d2 *= d1 } d2 = 1.0 var s2 float64 for _, v := range x { s2 += d2 * v d2 *= d1 } t := s1 - s2*s2 - 1 s3 := 2 * d1 * s2 d2 = 2 / d1 th := 2 * d1 * d1 * t for j := 0; j < dim; j++ { v := float64(j) - s3 d3 := 1 / d1 for k := 0; k <= j; k++ { hess.SetSym(k, j, hess.At(k, j)+d2*d3*(v*(float64(k)-s3)-th)) d3 *= d1 } d2 *= d1 } } t1 := x[1] - x[0]*x[0] - 1 hess.SetSym(0, 0, hess.At(0, 0)+8*x[0]*x[0]+2-4*t1) hess.SetSym(0, 1, hess.At(0, 1)-4*x[0]) hess.SetSym(1, 1, hess.At(1, 1)+2) }