// Copyright ©2019 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gonum import ( "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" ) // Dpbtrs solves a system of linear equations A*X = B with an n×n symmetric // positive definite band matrix A using the Cholesky factorization // A = Uᵀ * U if uplo == blas.Upper // A = L * Lᵀ if uplo == blas.Lower // computed by Dpbtrf. kd is the number of super- or sub-diagonals of A. See the // documentation for Dpbtrf for a description of the band storage format of A. // // On entry, b contains the n×nrhs right hand side matrix B. On return, it is // overwritten with the solution matrix X. func (Implementation) Dpbtrs(uplo blas.Uplo, n, kd, nrhs int, ab []float64, ldab int, b []float64, ldb int) { switch { case uplo != blas.Upper && uplo != blas.Lower: panic(badUplo) case n < 0: panic(nLT0) case kd < 0: panic(kdLT0) case nrhs < 0: panic(nrhsLT0) case ldab < kd+1: panic(badLdA) case ldb < max(1, nrhs): panic(badLdB) } // Quick return if possible. if n == 0 || nrhs == 0 { return } if len(ab) < (n-1)*ldab+kd+1 { panic(shortAB) } if len(b) < (n-1)*ldb+nrhs { panic(shortB) } bi := blas64.Implementation() if uplo == blas.Upper { // Solve A*X = B where A = Uᵀ*U. for j := 0; j < nrhs; j++ { // Solve Uᵀ*Y = B, overwriting B with Y. bi.Dtbsv(blas.Upper, blas.Trans, blas.NonUnit, n, kd, ab, ldab, b[j:], ldb) // Solve U*X = Y, overwriting Y with X. bi.Dtbsv(blas.Upper, blas.NoTrans, blas.NonUnit, n, kd, ab, ldab, b[j:], ldb) } } else { // Solve A*X = B where A = L*Lᵀ. for j := 0; j < nrhs; j++ { // Solve L*Y = B, overwriting B with Y. bi.Dtbsv(blas.Lower, blas.NoTrans, blas.NonUnit, n, kd, ab, ldab, b[j:], ldb) // Solve Lᵀ*X = Y, overwriting Y with X. bi.Dtbsv(blas.Lower, blas.Trans, blas.NonUnit, n, kd, ab, ldab, b[j:], ldb) } } }