// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testlapack import ( "fmt" "math" "testing" "golang.org/x/exp/rand" ) type Dlanv2er interface { Dlanv2(a, b, c, d float64) (aa, bb, cc, dd float64, rt1r, rt1i, rt2r, rt2i float64, cs, sn float64) } func Dlanv2Test(t *testing.T, impl Dlanv2er) { rnd := rand.New(rand.NewSource(1)) t.Run("UpperTriangular", func(t *testing.T) { for i := 0; i < 10; i++ { a := rnd.NormFloat64() b := rnd.NormFloat64() d := rnd.NormFloat64() dlanv2Test(t, impl, a, b, 0, d) } }) t.Run("LowerTriangular", func(t *testing.T) { for i := 0; i < 10; i++ { a := rnd.NormFloat64() c := rnd.NormFloat64() d := rnd.NormFloat64() dlanv2Test(t, impl, a, 0, c, d) } }) t.Run("StandardSchur", func(t *testing.T) { for i := 0; i < 10; i++ { a := rnd.NormFloat64() b := rnd.NormFloat64() c := rnd.NormFloat64() if math.Signbit(b) == math.Signbit(c) { c = -c } dlanv2Test(t, impl, a, b, c, a) } }) t.Run("General", func(t *testing.T) { for i := 0; i < 100; i++ { a := rnd.NormFloat64() b := rnd.NormFloat64() c := rnd.NormFloat64() d := rnd.NormFloat64() dlanv2Test(t, impl, a, b, c, d) } }) } func dlanv2Test(t *testing.T, impl Dlanv2er, a, b, c, d float64) { aa, bb, cc, dd, rt1r, rt1i, rt2r, rt2i, cs, sn := impl.Dlanv2(a, b, c, d) mat := fmt.Sprintf("[%v %v; %v %v]", a, b, c, d) if cc == 0 { // The eigenvalues are real, so check that the imaginary parts // are zero. if rt1i != 0 || rt2i != 0 { t.Errorf("Unexpected complex eigenvalues for %v", mat) } } else { // The eigenvalues are complex, so check that documented // conditions hold. if aa != dd { t.Errorf("Diagonal elements not equal for %v: got [%v %v]", mat, aa, dd) } if bb*cc >= 0 { t.Errorf("Non-diagonal elements have the same sign for %v: got [%v %v]", mat, bb, cc) } else { // Compute the absolute value of the imaginary part. im := math.Sqrt(-bb * cc) // Check that ±im is close to one of the returned // imaginary parts. if math.Abs(rt1i-im) > 1e-14 && math.Abs(rt1i+im) > 1e-14 { t.Errorf("Unexpected imaginary part of eigenvalue for %v: got %v, want %v or %v", mat, rt1i, im, -im) } if math.Abs(rt2i-im) > 1e-14 && math.Abs(rt2i+im) > 1e-14 { t.Errorf("Unexpected imaginary part of eigenvalue for %v: got %v, want %v or %v", mat, rt2i, im, -im) } } } // Check that the returned real parts are consistent. if rt1r != aa && rt1r != dd { t.Errorf("Unexpected real part of eigenvalue for %v: got %v, want %v or %v", mat, rt1r, aa, dd) } if rt2r != aa && rt2r != dd { t.Errorf("Unexpected real part of eigenvalue for %v: got %v, want %v or %v", mat, rt2r, aa, dd) } // Check that the columns of the orthogonal matrix have unit norm. if math.Abs(math.Hypot(cs, sn)-1) > 1e-14 { t.Errorf("Unexpected unitary matrix for %v: got cs %v, sn %v", mat, cs, sn) } // Re-compute the original matrix [a b; c d] from its factorization. gota := cs*(aa*cs-bb*sn) - sn*(cc*cs-dd*sn) gotb := cs*(aa*sn+bb*cs) - sn*(cc*sn+dd*cs) gotc := sn*(aa*cs-bb*sn) + cs*(cc*cs-dd*sn) gotd := sn*(aa*sn+bb*cs) + cs*(cc*sn+dd*cs) if math.Abs(gota-a) > 1e-14 || math.Abs(gotb-b) > 1e-14 || math.Abs(gotc-c) > 1e-14 || math.Abs(gotd-d) > 1e-14 { t.Errorf("Unexpected factorization: got [%v %v; %v %v], want [%v %v; %v %v]", gota, gotb, gotc, gotd, a, b, c, d) } }