// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testlapack import ( "fmt" "testing" "golang.org/x/exp/rand" "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" ) type Dorgqler interface { Dorgql(m, n, k int, a []float64, lda int, tau, work []float64, lwork int) Dlarfger } func DorgqlTest(t *testing.T, impl Dorgqler) { const tol = 1e-14 type Dorg2ler interface { Dorg2l(m, n, k int, a []float64, lda int, tau, work []float64) } dorg2ler, hasDorg2l := impl.(Dorg2ler) rnd := rand.New(rand.NewSource(1)) for _, m := range []int{0, 1, 2, 3, 4, 5, 7, 10, 15, 30, 50, 150} { for _, extra := range []int{0, 11} { for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} { var k int if m >= 129 { // For large matrices make sure that k // is large enough to trigger blocked // path. k = 129 + rnd.Intn(m-129+1) } else { k = rnd.Intn(m + 1) } n := k + rnd.Intn(m-k+1) if m == 0 || n == 0 { m = 0 n = 0 k = 0 } // Generate k elementary reflectors in the last // k columns of A. a := nanGeneral(m, n, n+extra) tau := make([]float64, k) for l := 0; l < k; l++ { jj := m - k + l v := randomSlice(jj, rnd) _, tau[l] = impl.Dlarfg(len(v)+1, rnd.NormFloat64(), v, 1) j := n - k + l for i := 0; i < jj; i++ { a.Data[i*a.Stride+j] = v[i] } } aCopy := cloneGeneral(a) // Compute the full matrix Q by forming the // Householder reflectors explicitly. q := eye(m, m) qCopy := eye(m, m) for l := 0; l < k; l++ { h := eye(m, m) jj := m - k + l j := n - k + l v := blas64.Vector{Data: make([]float64, m), Inc: 1} for i := 0; i < jj; i++ { v.Data[i] = a.Data[i*a.Stride+j] } v.Data[jj] = 1 blas64.Ger(-tau[l], v, v, h) copy(qCopy.Data, q.Data) blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, h, qCopy, 0, q) } // View the last n columns of Q as 'want'. want := blas64.General{ Rows: m, Cols: n, Stride: q.Stride, Data: q.Data[m-n:], } var lwork int switch wl { case minimumWork: lwork = max(1, n) case mediumWork: work := make([]float64, 1) impl.Dorgql(m, n, k, a.Data, a.Stride, tau, work, -1) lwork = (int(work[0]) + n) / 2 lwork = max(1, lwork) case optimumWork: work := make([]float64, 1) impl.Dorgql(m, n, k, a.Data, a.Stride, tau, work, -1) lwork = int(work[0]) } work := make([]float64, lwork) // Compute the last n columns of Q by a call to // Dorgql. impl.Dorgql(m, n, k, a.Data, a.Stride, tau, work, len(work)) prefix := fmt.Sprintf("Case m=%v,n=%v,k=%v,wl=%v", m, n, k, wl) if !generalOutsideAllNaN(a) { t.Errorf("%v: out-of-range write to A", prefix) } if !equalApproxGeneral(want, a, tol) { t.Errorf("%v: unexpected Q", prefix) } // Compute the last n columns of Q by a call to // Dorg2l and check that we get the same result. if !hasDorg2l { continue } dorg2ler.Dorg2l(m, n, k, aCopy.Data, aCopy.Stride, tau, work) if !equalApproxGeneral(aCopy, a, tol) { t.Errorf("%v: mismatch between Dorgql and Dorg2l", prefix) } } } } }