// Copyright ©2019 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package r3 import "math" // Vec is a 3D vector. type Vec struct { X, Y, Z float64 } // Add returns the vector sum of p and q. func Add(p, q Vec) Vec { return Vec{ X: p.X + q.X, Y: p.Y + q.Y, Z: p.Z + q.Z, } } // Sub returns the vector sum of p and -q. func Sub(p, q Vec) Vec { return Vec{ X: p.X - q.X, Y: p.Y - q.Y, Z: p.Z - q.Z, } } // Scale returns the vector p scaled by f. func Scale(f float64, p Vec) Vec { return Vec{ X: f * p.X, Y: f * p.Y, Z: f * p.Z, } } // Dot returns the dot product p·q. func Dot(p, q Vec) float64 { return p.X*q.X + p.Y*q.Y + p.Z*q.Z } // Cross returns the cross product p×q. func Cross(p, q Vec) Vec { return Vec{ p.Y*q.Z - p.Z*q.Y, p.Z*q.X - p.X*q.Z, p.X*q.Y - p.Y*q.X, } } // Rotate returns a new vector, rotated by alpha around the provided axis. func Rotate(p Vec, alpha float64, axis Vec) Vec { return NewRotation(alpha, axis).Rotate(p) } // Norm returns the Euclidean norm of p // |p| = sqrt(p_x^2 + p_y^2 + p_z^2). func Norm(p Vec) float64 { return math.Hypot(p.X, math.Hypot(p.Y, p.Z)) } // Norm2 returns the Euclidean squared norm of p // |p|^2 = p_x^2 + p_y^2 + p_z^2. func Norm2(p Vec) float64 { return p.X*p.X + p.Y*p.Y + p.Z*p.Z } // Unit returns the unit vector colinear to p. // Unit returns {NaN,NaN,NaN} for the zero vector. func Unit(p Vec) Vec { if p.X == 0 && p.Y == 0 && p.Z == 0 { return Vec{X: math.NaN(), Y: math.NaN(), Z: math.NaN()} } return Scale(1/Norm(p), p) } // Cos returns the cosine of the opening angle between p and q. func Cos(p, q Vec) float64 { return Dot(p, q) / (Norm(p) * Norm(q)) } // Box is a 3D bounding box. type Box struct { Min, Max Vec }