// Copyright ©2016 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package native import ( "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" ) // Dsytd2 reduces a symmetric n×n matrix A to symmetric tridiagonal form T by an // orthogonal similarity transformation // Q^T * A * Q = T // On entry, the matrix is contained in the specified triangle of a. On exit, // if uplo == blas.Upper, the diagonal and first super-diagonal of a are // overwritten with the elements of T. The elements above the first super-diagonal // are overwritten with the the elementary reflectors that are used with the // elements written to tau in order to construct Q. If uplo == blas.Lower, the // elements are written in the lower triangular region. // // d must have length at least n. e and tau must have length at least n-1. Dsytd2 // will panic if these sizes are not met. // // Q is represented as a product of elementary reflectors. // If uplo == blas.Upper // Q = H_{n-2} * ... * H_1 * H_0 // and if uplo == blas.Lower // Q = H_0 * H_1 * ... * H_{n-2} // where // H_i = I - tau * v * v^T // where tau is stored in tau[i], and v is stored in a. // // If uplo == blas.Upper, v[0:i-1] is stored in A[0:i-1,i+1], v[i] = 1, and // v[i+1:] = 0. The elements of a are // [ d e v2 v3 v4] // [ d e v3 v4] // [ d e v4] // [ d e] // [ d] // If uplo == blas.Lower, v[0:i+1] = 0, v[i+1] = 1, and v[i+2:] is stored in // A[i+2:n,i]. // The elements of a are // [ d ] // [ e d ] // [v1 e d ] // [v1 v2 e d ] // [v1 v2 v3 e d] // // Dsytd2 is an internal routine. It is exported for testing purposes. func (impl Implementation) Dsytd2(uplo blas.Uplo, n int, a []float64, lda int, d, e, tau []float64) { checkMatrix(n, n, a, lda) if len(d) < n { panic(badD) } if len(e) < n-1 { panic(badE) } if len(tau) < n-1 { panic(badTau) } if n <= 0 { return } bi := blas64.Implementation() if uplo == blas.Upper { // Reduce the upper triangle of A. for i := n - 2; i >= 0; i-- { // Generate elementary reflector H_i = I - tau * v * v^T to // annihilate A[i:i-1, i+1]. var taui float64 a[i*lda+i+1], taui = impl.Dlarfg(i+1, a[i*lda+i+1], a[i+1:], lda) e[i] = a[i*lda+i+1] if taui != 0 { // Apply H_i from both sides to A[0:i,0:i]. a[i*lda+i+1] = 1 // Compute x := tau * A * v storing x in tau[0:i]. bi.Dsymv(uplo, i+1, taui, a, lda, a[i+1:], lda, 0, tau, 1) // Compute w := x - 1/2 * tau * (x^T * v) * v. alpha := -0.5 * taui * bi.Ddot(i+1, tau, 1, a[i+1:], lda) bi.Daxpy(i+1, alpha, a[i+1:], lda, tau, 1) // Apply the transformation as a rank-2 update // A = A - v * w^T - w * v^T. bi.Dsyr2(uplo, i+1, -1, a[i+1:], lda, tau, 1, a, lda) a[i*lda+i+1] = e[i] } d[i+1] = a[(i+1)*lda+i+1] tau[i] = taui } d[0] = a[0] return } // Reduce the lower triangle of A. for i := 0; i < n-1; i++ { // Generate elementary reflector H_i = I - tau * v * v^T to // annihilate A[i+2:n, i]. var taui float64 a[(i+1)*lda+i], taui = impl.Dlarfg(n-i-1, a[(i+1)*lda+i], a[min(i+2, n-1)*lda+i:], lda) e[i] = a[(i+1)*lda+i] if taui != 0 { // Apply H_i from both sides to A[i+1:n, i+1:n]. a[(i+1)*lda+i] = 1 // Compute x := tau * A * v, storing y in tau[i:n-1]. bi.Dsymv(uplo, n-i-1, taui, a[(i+1)*lda+i+1:], lda, a[(i+1)*lda+i:], lda, 0, tau[i:], 1) // Compute w := x - 1/2 * tau * (x^T * v) * v. alpha := -0.5 * taui * bi.Ddot(n-i-1, tau[i:], 1, a[(i+1)*lda+i:], lda) bi.Daxpy(n-i-1, alpha, a[(i+1)*lda+i:], lda, tau[i:], 1) // Apply the transformation as a rank-2 update // A = A - v * w^T - w * v^T. bi.Dsyr2(uplo, n-i-1, -1, a[(i+1)*lda+i:], lda, tau[i:], 1, a[(i+1)*lda+i+1:], lda) a[(i+1)*lda+i] = e[i] } d[i] = a[i*lda+i] tau[i] = taui } d[n-1] = a[(n-1)*lda+n-1] }