// Uses the netlib standard. Other implementations may differ. Difference // is that the code panics for n < 0 and incx == 0 rather than returning zero. // (Documentation says incx must not be zero) // // TODO: Improve documentation package referenceblas import ( "github.com/gonum/blas" "math" ) type Blas struct{} var Blasser Blas const ( negativeN = "blas: negative number of elements" zeroInc = "blas: zero value of increment" negInc = "blas: negative value of increment" ) // Ddot computes the dot product of the two vectors \sum_i x[i]*y[i] func (Blas) Ddot(n int, x []float64, incX int, y []float64, incY int) float64 { if n < 0 { panic(negativeN) } if incX == 0 || incY == 0 { panic(zeroInc) } var ix, iy int var sum float64 if incX < 0 { ix = (-n + 1) * incX } if incY < 0 { iy = (-n + 1) * incY } for i := 0; i < n; i++ { sum += y[iy] * x[ix] ix += incX iy += incY } return sum } // Dnrm2 computes the euclidean norm of a vector via the function // name so that // dnrm2 = sqrt(x'x) // This function also does not allow negative increments, see: // http://www.netlib.org/blas/dnrm2.f func (Blas) Dnrm2(n int, x []float64, incX int) float64 { if incX < 1 { if incX == 0 { panic(zeroInc) } return 0 } if n < 2 { if n == 1 { return math.Abs(x[0]) } if n == 0 { return 0 } if n < 1 { panic(negativeN) } } scale := 0.0 sumSquares := 1.0 for ix := 0; ix < n*incX; ix += incX { val := x[ix] if val == 0 { continue } absxi := math.Abs(val) if scale < absxi { sumSquares = 1 + sumSquares*(scale/absxi)*(scale/absxi) scale = absxi } else { sumSquares = sumSquares + (absxi/scale)*(absxi/scale) } } return scale * math.Sqrt(sumSquares) } // Dasum computes the sum of the absolute values of the elements of x // Dasum returns for negative increment in the netlib package (seems // to differ from behavior of other routines) and so it panics here func (Blas) Dasum(n int, x []float64, incX int) float64 { var sum float64 if n < 0 { panic(negativeN) } if incX <= 0 { if incX == 0 { panic(zeroInc) } return 0 } for i := 0; i < n; i++ { sum += math.Abs(x[i*incX]) } return sum } // Idamax returns the index of the largest element of x. If there are multiple // such indices it returns the earliest func (Blas) Idamax(n int, x []float64, incX int) int { if incX < 1 { if incX == 0 { panic(zeroInc) } return -1 } if n < 2 { if n == 1 { return 0 } if n == 0 { return -1 // Netlib returns invalid index when n == 0 } if n < 1 { panic(negativeN) } } idx := 0 max := math.Abs(x[0]) for i := 1; i < n; i++ { v := x[i*incX] absV := math.Abs(v) if absV > max { max = absV idx = i } } return idx } // Dswap interchanges two vectors func (Blas) Dswap(n int, x []float64, incX int, y []float64, incY int) { if n < 1 { if n == 0 { return } panic(negativeN) } if incX == 0 || incY == 0 { panic(zeroInc) } var ix, iy int if incX < 0 { ix = (-n + 1) * incX } if incY < 0 { iy = (-n + 1) * incY } for i := 0; i < n; i++ { x[ix], y[iy] = y[iy], x[ix] ix += incX iy += incY } } func (Blas) Dcopy(n int, x []float64, incX int, y []float64, incY int) { if n < 1 { if n == 0 { return } panic(negativeN) } if incX == 0 || incY == 0 { panic(zeroInc) } var ix, iy int if incX < 0 { ix = (-n + 1) * incX } if incY < 0 { iy = (-n + 1) * incY } for i := 0; i < n; i++ { y[iy] = x[ix] ix += incX iy += incY } } // Daxpy computes y <- α x + y func (Blas) Daxpy(n int, alpha float64, x []float64, incX int, y []float64, incY int) { if n < 1 { if n == 0 { return } panic(negativeN) } if incX == 0 || incY == 0 { panic(zeroInc) } if alpha == 0 { return } var ix, iy int if incX < 0 { ix = (-n + 1) * incX } if incY < 0 { iy = (-n + 1) * incY } for i := 0; i < n; i++ { y[iy] += alpha * x[ix] ix += incX iy += incY } } // DrotG gives plane rotation // // _ _ _ _ _ _ // | c s | | a | | r | // | -s c | * | b | = | 0 | // _ _ _ _ _ _ // // r = ±(a^2 + b^2) // c = a/r, the cosine of the plane rotation // s = b/r, the sine of the plane rotation // // NOTE: Netlib library seems to give a different // sign for r when a or b is zero than other implementations // and different than BLAS technical manual func (Blas) Drotg(a, b float64) (c, s, r, z float64) { if b == 0 && a == 0 { return 1, 0, a, 0 } /* if a == 0 { if b > 0 { return 0, 1, b, 1 } return 0, -1, -b, 1 } */ absA := math.Abs(a) absB := math.Abs(b) aGTb := absA > absB r = math.Hypot(a, b) if aGTb { r = math.Copysign(r, a) } else { r = math.Copysign(r, b) } c = a / r s = b / r if aGTb { z = s } else if c != 0 { // r == 0 case handled above z = 1 / c } else { z = 1 } return } // Drotmg computes the modified Givens rotation. See // http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html // for more details // Simpler implementation, possibly wrong func (Blas) Drotmg(d1, d2, x1, y1 float64) (p blas.DrotmParams, rd1, rd2, rx1 float64) { var p1, p2, q1, q2, u float64 gam := 4096.0 gamsq := 16777216.0 rgamsq := 5.9604645e-8 if d1 < 0 { p.Flag = blas.Rescaling return } p2 = d2 * y1 if p2 == 0 { p.Flag = blas.Identity rd1 = d1 rd2 = d2 rx1 = x1 return } p1 = d1 * x1 q2 = p2 * y1 q1 = p1 * x1 absQ1 := math.Abs(q1) absQ2 := math.Abs(q2) if absQ1 < absQ2 && q2 < 0 { p.Flag = blas.Rescaling return } if d1 == 0 { p.Flag = blas.Diagonal p.H[0] = p1 / p2 p.H[3] = x1 / y1 u = 1 + p.H[0]*p.H[3] rd1, rd2 = d2/u, d1/u rx1 = y1 / u return } // Now we know that d1 != 0, and d2 != 0. If d2 == 0, it would be caught // when p2 == 0, and if d1 == 0, then it is caught above if absQ1 > absQ2 { p.H[1] = -y1 / x1 p.H[2] = p2 / p1 u = 1 - p.H[2]*p.H[1] rd1 = d1 rd2 = d2 rx1 = x1 p.Flag = blas.OffDiagonal // u must be greater than zero because |q1| > |q2|, so check from netlib // is unnecessary // This is left in for ease of comparison with complex routines //if u > 0 { rd1 /= u rd2 /= u rx1 *= u //} } else { p.Flag = blas.Diagonal p.H[0] = p1 / p2 p.H[3] = x1 / y1 u = 1 + p.H[0]*p.H[3] rd1 = d2 / u rd2 = d1 / u rx1 = y1 * u } for rd1 <= rgamsq || rd1 >= gamsq { if p.Flag == blas.OffDiagonal { p.H[0] = 1 p.H[3] = 1 p.Flag = blas.Rescaling } else if p.Flag == blas.Diagonal { p.H[1] = -1 p.H[2] = 1 p.Flag = blas.Rescaling } if rd1 <= rgamsq { rd1 *= gam * gam rx1 /= gam p.H[0] /= gam p.H[2] /= gam } else { rd1 /= gam * gam rx1 *= gam p.H[0] *= gam p.H[2] *= gam } } for math.Abs(rd2) <= rgamsq || math.Abs(rd2) >= gamsq { if p.Flag == blas.OffDiagonal { p.H[0] = 1 p.H[3] = 1 p.Flag = blas.Rescaling } else if p.Flag == blas.Diagonal { p.H[1] = -1 p.H[2] = 1 p.Flag = blas.Rescaling } if math.Abs(rd2) <= rgamsq { rd2 *= gam * gam p.H[1] /= gam p.H[3] /= gam } else { rd2 /= gam * gam p.H[1] *= gam p.H[3] *= gam } } return } // Drot applies a plane transformation func (Blas) Drot(n int, x []float64, incX int, y []float64, incY int, c float64, s float64) { if n < 1 { if n == 0 { return } panic(negativeN) } if incX == 0 || incY == 0 { panic(zeroInc) } var ix, iy int if incX < 0 { ix = (-n + 1) * incX } if incY < 0 { iy = (-n + 1) * incY } for i := 0; i < n; i++ { x[ix], y[iy] = c*x[ix]+s*y[iy], c*y[iy]-s*x[ix] ix += incX iy += incY } } // Drotm applies the modified Givens rotation to the 2 x N matrix func (Blas) Drotm(n int, x []float64, incX int, y []float64, incY int, p blas.DrotmParams) { // Some weirdness between this and drotmg. Maybe drotmg should panic on flag of -2? // Need to check if it's used elsewhere // // Same with some terms being zero // // Odd that this doesn't panic with incX == 0 or incY == 0 like all the others if n <= 0 { if n == 0 { return } panic(negativeN) } if incX == 0 || incY == 0 { panic(zeroInc) } var h11, h12, h21, h22 float64 var ix, iy int switch p.Flag { case blas.Identity: return case blas.Rescaling: h11 = p.H[0] h12 = p.H[2] h21 = p.H[1] h22 = p.H[3] case blas.OffDiagonal: h11 = 1 h12 = p.H[2] h21 = p.H[1] h22 = 1 case blas.Diagonal: h11 = p.H[0] h12 = 1 h21 = -1 h22 = p.H[3] } if incX < 0 { ix = (-n + 1) * incX } if incY < 0 { iy = (-n + 1) * incY } for i := 0; i < n; i++ { x[ix], y[iy] = x[ix]*h11+y[iy]*h12, x[ix]*h21+y[iy]*h22 ix += incX iy += incY } return } func (Blas) Dscal(n int, alpha float64, x []float64, incX int) { if incX < 1 { if incX == 0 { panic(zeroInc) } return } if n < 1 { if n == 0 { return } if n < 1 { panic(negativeN) } } for ix := 0; ix < n*incX; ix += incX { x[ix] *= alpha } return }