// Copyright ©2023 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testlapack import ( "fmt" "testing" "golang.org/x/exp/rand" "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" "gonum.org/v1/gonum/lapack" ) type Dgghrder interface { Dgghrd(compq, compz lapack.OrthoComp, n, ilo, ihi int, a []float64, lda int, b []float64, ldb int, q []float64, ldq int, z []float64, ldz int) } func DgghrdTest(t *testing.T, impl Dgghrder) { rnd := rand.New(rand.NewSource(1)) comps := []lapack.OrthoComp{lapack.OrthoExplicit, lapack.OrthoNone, lapack.OrthoPostmul} for _, compq := range comps { for _, compz := range comps { for _, n := range []int{0, 1, 2, 3, 4, 15} { for _, ld := range []int{max(1, n), n + 5} { testDgghrd(t, impl, rnd, compq, compz, n, 0, n-1, ld, ld, ld, ld) } } } } } func testDgghrd(t *testing.T, impl Dgghrder, rnd *rand.Rand, compq, compz lapack.OrthoComp, n, ilo, ihi, lda, ldb, ldq, ldz int) { const tol = 1e-13 a := randomGeneral(n, n, lda, rnd) b := randomGeneral(n, n, ldb, rnd) var q, q1 blas64.General switch compq { case lapack.OrthoExplicit: // Initialize q to a non-orthogonal matrix, Dgghrd should overwrite it // with an orthogonal Q. q = randomGeneral(n, n, ldq, rnd) case lapack.OrthoPostmul: // Initialize q to an orthogonal matrix Q1, so that the result Q1*Q is // again orthogonal. q = randomOrthogonal(n, rnd) q1 = cloneGeneral(q) } var z, z1 blas64.General switch compz { case lapack.OrthoExplicit: z = randomGeneral(n, n, ldz, rnd) case lapack.OrthoPostmul: z = randomOrthogonal(n, rnd) z1 = cloneGeneral(z) } hGot := cloneGeneral(a) tGot := cloneGeneral(b) impl.Dgghrd(compq, compz, n, ilo, ihi, hGot.Data, hGot.Stride, tGot.Data, tGot.Stride, q.Data, max(1, q.Stride), z.Data, max(1, z.Stride)) if n == 0 { return } name := fmt.Sprintf("Case compq=%v,compz=%v,n=%v,ilo=%v,ihi=%v", compq, compz, n, ilo, ihi) if !isUpperHessenberg(hGot) { t.Errorf("%v: H is not upper Hessenberg", name) } if !isUpperTriangular(tGot) { t.Errorf("%v: T is not upper triangular", name) } if compq != lapack.OrthoNone { if resid := residualOrthogonal(q, true); resid > tol { t.Errorf("%v: Q is not orthogonal, resid=%v", name, resid) } } if compz != lapack.OrthoNone { if resid := residualOrthogonal(z, true); resid > tol { t.Errorf("%v: Z is not orthogonal, resid=%v", name, resid) } } if compq != compz { // Verify reduction only when both Q and Z are computed. return } // Zero out the lower triangle of B. for i := 1; i < n; i++ { for j := 0; j < i; j++ { b.Data[i*b.Stride+j] = 0 } } aux := zeros(n, n, n) switch compq { case lapack.OrthoExplicit: // Qᵀ*A*Z = H hCalc := zeros(n, n, n) blas64.Gemm(blas.Trans, blas.NoTrans, 1, q, a, 0, aux) blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, aux, z, 1, hCalc) if !equalApproxGeneral(hGot, hCalc, tol) { t.Errorf("%v: Qᵀ*A*Z != H", name) } // Qᵀ*B*Z = T tCalc := zeros(n, n, n) blas64.Gemm(blas.Trans, blas.NoTrans, 1, q, b, 0, aux) blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, aux, z, 1, tCalc) if !equalApproxGeneral(tGot, tCalc, tol) { t.Errorf("%v: Qᵀ*B*Z != T", name) } case lapack.OrthoPostmul: // Q1 * A * Z1ᵀ = (Q1*Q) * H * (Z1*Z)ᵀ lhs := zeros(n, n, n) blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, q1, a, 0, aux) blas64.Gemm(blas.NoTrans, blas.Trans, 1, aux, z1, 0, lhs) rhs := zeros(n, n, n) blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, q, hGot, 0, aux) blas64.Gemm(blas.NoTrans, blas.Trans, 1, aux, z, 0, rhs) if !equalApproxGeneral(lhs, rhs, tol) { t.Errorf("%v: Q1 * A * Z1ᵀ != (Q1*Q) * H * (Z1*Z)ᵀ", name) } // Q1 * B * Z1ᵀ = (Q1*Q) * T * (Z1*Z)ᵀ blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, q1, b, 0, aux) blas64.Gemm(blas.NoTrans, blas.Trans, 1, aux, z1, 0, lhs) blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, q, tGot, 0, aux) blas64.Gemm(blas.NoTrans, blas.Trans, 1, aux, z, 0, rhs) if !equalApproxGeneral(lhs, rhs, tol) { t.Errorf("%v: Q1 * B * Z1ᵀ != (Q1*Q) * T * (Z1*Z)ᵀ", name) } } }