// Copyright ©2020 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package window_test import ( "fmt" "math" "math/cmplx" "gonum.org/v1/gonum/dsp/fourier" "gonum.org/v1/gonum/dsp/window" ) func Example() { // The input sequence is a 2.5 period of the Sin function. src := make([]float64, 20) k := 5 * math.Pi / float64(len(src)-1) for i := range src { src[i] = math.Sin(k * float64(i)) } // Initialize an FFT and perform the analysis. fft := fourier.NewFFT(len(src)) coeff := fft.Coefficients(nil, src) // The result shows that width of the main lobe with center // between frequencies 0.1 and 0.15 is small, but that the // height of the side lobes is large. fmt.Println("Rectangular window (or no window):") for i, c := range coeff { fmt.Printf("freq=%.4f\tcycles/period, magnitude=%.4f,\tphase=%.4f\n", fft.Freq(i), cmplx.Abs(c), cmplx.Phase(c)) } // Initialize an FFT and perform the analysis on a sequence // transformed by the Hamming window function. fft = fourier.NewFFT(len(src)) coeff = fft.Coefficients(nil, window.Hamming(src)) // The result shows that width of the main lobe is wider, // but height of the side lobes is lower. fmt.Println("Hamming window:") // The magnitude of all bins has been decreased by β. // Generally in an analysis amplification may be omitted, but to // make a comparable data, the result should be amplified by -β // of the window function — +5.37 dB for the Hamming window. // -β = 20 log_10(amplifier). amplifier := math.Pow(10, 5.37/20.0) for i, c := range coeff { fmt.Printf("freq=%.4f\tcycles/period, magnitude=%.4f,\tphase=%.4f\n", fft.Freq(i), amplifier*cmplx.Abs(c), cmplx.Phase(c)) } // Output: // // Rectangular window (or no window): // freq=0.0000 cycles/period, magnitude=2.2798, phase=0.0000 // freq=0.0500 cycles/period, magnitude=2.6542, phase=0.1571 // freq=0.1000 cycles/period, magnitude=5.3115, phase=0.3142 // freq=0.1500 cycles/period, magnitude=7.3247, phase=-2.6704 // freq=0.2000 cycles/period, magnitude=1.6163, phase=-2.5133 // freq=0.2500 cycles/period, magnitude=0.7681, phase=-2.3562 // freq=0.3000 cycles/period, magnitude=0.4385, phase=-2.1991 // freq=0.3500 cycles/period, magnitude=0.2640, phase=-2.0420 // freq=0.4000 cycles/period, magnitude=0.1530, phase=-1.8850 // freq=0.4500 cycles/period, magnitude=0.0707, phase=-1.7279 // freq=0.5000 cycles/period, magnitude=0.0000, phase=0.0000 // Hamming window: // freq=0.0000 cycles/period, magnitude=0.0542, phase=3.1416 // freq=0.0500 cycles/period, magnitude=0.8458, phase=-2.9845 // freq=0.1000 cycles/period, magnitude=7.1519, phase=0.3142 // freq=0.1500 cycles/period, magnitude=8.5907, phase=-2.6704 // freq=0.2000 cycles/period, magnitude=2.0804, phase=0.6283 // freq=0.2500 cycles/period, magnitude=0.0816, phase=0.7854 // freq=0.3000 cycles/period, magnitude=0.0156, phase=-2.1991 // freq=0.3500 cycles/period, magnitude=0.0224, phase=-2.0420 // freq=0.4000 cycles/period, magnitude=0.0163, phase=-1.8850 // freq=0.4500 cycles/period, magnitude=0.0083, phase=-1.7279 // freq=0.5000 cycles/period, magnitude=0.0000, phase=0.0000 } func ExampleHamming() { src := []float64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} // Window functions change data in place. So, if input data // needs to stay unchanged, it must be copied. srcCpy := append([]float64(nil), src...) // Apply window function to srcCpy. dst := window.Hamming(srcCpy) // src is unchanged. fmt.Printf("src: %f\n", src) // srcCpy is altered. fmt.Printf("srcCpy: %f\n", srcCpy) // dst mirrors the srcCpy slice. fmt.Printf("dst: %f\n", dst) // Output: // // src: [1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000] // srcCpy: [0.080000 0.104924 0.176995 0.288404 0.427077 0.577986 0.724780 0.851550 0.944558 0.993726 0.993726 0.944558 0.851550 0.724780 0.577986 0.427077 0.288404 0.176995 0.104924 0.080000] // dst: [0.080000 0.104924 0.176995 0.288404 0.427077 0.577986 0.724780 0.851550 0.944558 0.993726 0.993726 0.944558 0.851550 0.724780 0.577986 0.427077 0.288404 0.176995 0.104924 0.080000] } func ExampleValues() { src := []float64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} // Create a Sine Window lookup table. sine := window.NewValues(window.Sine, len(src)) // Apply the transformation to the src. fmt.Printf("dst: %f\n", sine.Transform(src)) // Output: // // dst: [0.000000 0.164595 0.324699 0.475947 0.614213 0.735724 0.837166 0.915773 0.969400 0.996584 0.996584 0.969400 0.915773 0.837166 0.735724 0.614213 0.475947 0.324699 0.164595 0.000000] } func ExampleValues_TransformTo_gabor() { src := []float64{1, 2, 1, 0, -1, -1, -2, -2, -1, -1, 0, 1, 1, 2, 1, 0, -1, -2, -1, 0} // Create a Gaussian Window lookup table for 4 samples. gaussian := window.NewValues(window.Gaussian{0.5}.Transform, 4) // Prepare a destination. dst := make([]float64, 8) // Apply the transformation to the src, placing it in dst. for i := 0; i < len(src)-len(gaussian); i++ { gaussian.TransformTo(dst[0:len(gaussian)], src[i:i+len(gaussian)]) // To perform the Gabor transform, we would calculate // the FFT on dst for each iteration. fmt.Printf("FFT(%f)\n", dst) } // Output: // // FFT([0.135335 1.601475 0.800737 0.000000 0.000000 0.000000 0.000000 0.000000]) // FFT([0.270671 0.800737 0.000000 -0.135335 0.000000 0.000000 0.000000 0.000000]) // FFT([0.135335 0.000000 -0.800737 -0.135335 0.000000 0.000000 0.000000 0.000000]) // FFT([0.000000 -0.800737 -0.800737 -0.270671 0.000000 0.000000 0.000000 0.000000]) // FFT([-0.135335 -0.800737 -1.601475 -0.270671 0.000000 0.000000 0.000000 0.000000]) // FFT([-0.135335 -1.601475 -1.601475 -0.135335 0.000000 0.000000 0.000000 0.000000]) // FFT([-0.270671 -1.601475 -0.800737 -0.135335 0.000000 0.000000 0.000000 0.000000]) // FFT([-0.270671 -0.800737 -0.800737 0.000000 0.000000 0.000000 0.000000 0.000000]) // FFT([-0.135335 -0.800737 0.000000 0.135335 0.000000 0.000000 0.000000 0.000000]) // FFT([-0.135335 0.000000 0.800737 0.135335 0.000000 0.000000 0.000000 0.000000]) // FFT([0.000000 0.800737 0.800737 0.270671 0.000000 0.000000 0.000000 0.000000]) // FFT([0.135335 0.800737 1.601475 0.135335 0.000000 0.000000 0.000000 0.000000]) // FFT([0.135335 1.601475 0.800737 0.000000 0.000000 0.000000 0.000000 0.000000]) // FFT([0.270671 0.800737 0.000000 -0.135335 0.000000 0.000000 0.000000 0.000000]) // FFT([0.135335 0.000000 -0.800737 -0.270671 0.000000 0.000000 0.000000 0.000000]) // FFT([0.000000 -0.800737 -1.601475 -0.135335 0.000000 0.000000 0.000000 0.000000]) }