// Copyright ©2014 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package optimize import ( "math" "gonum.org/v1/gonum/mat" ) // BFGS implements the Broyden–Fletcher–Goldfarb–Shanno optimization method. It // is a quasi-Newton method that performs successive rank-one updates to an // estimate of the inverse Hessian of the objective function. It exhibits // super-linear convergence when in proximity to a local minimum. It has memory // cost that is O(n^2) relative to the input dimension. type BFGS struct { // Linesearcher selects suitable steps along the descent direction. // Accepted steps should satisfy the strong Wolfe conditions. // If Linesearcher == nil, an appropriate default is chosen. Linesearcher Linesearcher ls *LinesearchMethod dim int x mat.VecDense // Location of the last major iteration. grad mat.VecDense // Gradient at the last major iteration. s mat.VecDense // Difference between locations in this and the previous iteration. y mat.VecDense // Difference between gradients in this and the previous iteration. tmp mat.VecDense invHess *mat.SymDense first bool // Indicator of the first iteration. } func (b *BFGS) Init(loc *Location) (Operation, error) { if b.Linesearcher == nil { b.Linesearcher = &Bisection{} } if b.ls == nil { b.ls = &LinesearchMethod{} } b.ls.Linesearcher = b.Linesearcher b.ls.NextDirectioner = b return b.ls.Init(loc) } func (b *BFGS) Iterate(loc *Location) (Operation, error) { return b.ls.Iterate(loc) } func (b *BFGS) InitDirection(loc *Location, dir []float64) (stepSize float64) { dim := len(loc.X) b.dim = dim b.first = true x := mat.NewVecDense(dim, loc.X) grad := mat.NewVecDense(dim, loc.Gradient) b.x.CloneVec(x) b.grad.CloneVec(grad) b.y.Reset() b.s.Reset() b.tmp.Reset() if b.invHess == nil || cap(b.invHess.RawSymmetric().Data) < dim*dim { b.invHess = mat.NewSymDense(dim, nil) } else { b.invHess = mat.NewSymDense(dim, b.invHess.RawSymmetric().Data[:dim*dim]) } // The values of the inverse Hessian are initialized in the first call to // NextDirection. // Initial direction is just negative of the gradient because the Hessian // is an identity matrix. d := mat.NewVecDense(dim, dir) d.ScaleVec(-1, grad) return 1 / mat.Norm(d, 2) } func (b *BFGS) NextDirection(loc *Location, dir []float64) (stepSize float64) { dim := b.dim if len(loc.X) != dim { panic("bfgs: unexpected size mismatch") } if len(loc.Gradient) != dim { panic("bfgs: unexpected size mismatch") } if len(dir) != dim { panic("bfgs: unexpected size mismatch") } x := mat.NewVecDense(dim, loc.X) grad := mat.NewVecDense(dim, loc.Gradient) // s = x_{k+1} - x_{k} b.s.SubVec(x, &b.x) // y = g_{k+1} - g_{k} b.y.SubVec(grad, &b.grad) sDotY := mat.Dot(&b.s, &b.y) if b.first { // Rescale the initial Hessian. // From: Nocedal, J., Wright, S.: Numerical Optimization (2nd ed). // Springer (2006), page 143, eq. 6.20. yDotY := mat.Dot(&b.y, &b.y) scale := sDotY / yDotY for i := 0; i < dim; i++ { for j := i; j < dim; j++ { if i == j { b.invHess.SetSym(i, i, scale) } else { b.invHess.SetSym(i, j, 0) } } } b.first = false } if math.Abs(sDotY) != 0 { // Update the inverse Hessian according to the formula // // B_{k+1}^-1 = B_k^-1 // + (s_k^T y_k + y_k^T B_k^-1 y_k) / (s_k^T y_k)^2 * (s_k s_k^T) // - (B_k^-1 y_k s_k^T + s_k y_k^T B_k^-1) / (s_k^T y_k). // // Note that y_k^T B_k^-1 y_k is a scalar, and that the third term is a // rank-two update where B_k^-1 y_k is one vector and s_k is the other. yBy := mat.Inner(&b.y, b.invHess, &b.y) b.tmp.MulVec(b.invHess, &b.y) scale := (1 + yBy/sDotY) / sDotY b.invHess.SymRankOne(b.invHess, scale, &b.s) b.invHess.RankTwo(b.invHess, -1/sDotY, &b.tmp, &b.s) } // Update the stored BFGS data. b.x.CopyVec(x) b.grad.CopyVec(grad) // New direction is stored in dir. d := mat.NewVecDense(dim, dir) d.MulVec(b.invHess, grad) d.ScaleVec(-1, d) return 1 } func (*BFGS) Needs() struct { Gradient bool Hessian bool } { return struct { Gradient bool Hessian bool }{true, false} }