// Copyright ©2022 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package r3 import "math" // Triangle represents a triangle in 3D space and // is composed by 3 vectors corresponding to the position // of each of the vertices. Ordering of these vertices // decides the "normal" direction. // Inverting ordering of two vertices inverts the resulting direction. type Triangle [3]Vec // Centroid returns the intersection of the three medians of the triangle // as a point in space. func (t Triangle) Centroid() Vec { return Scale(1.0/3.0, Add(Add(t[0], t[1]), t[2])) } // Normal returns the vector with direction // perpendicular to the Triangle's face and magnitude // twice that of the Triangle's area. The ordering // of the triangle vertices decides the normal's resulting // direction. The returned vector is not normalized. func (t Triangle) Normal() Vec { s1, s2, _ := t.sides() return Cross(s1, s2) } // IsDegenerate returns true if all of triangle's vertices are // within tol distance of its longest side. func (t Triangle) IsDegenerate(tol float64) bool { longIdx := t.longIdx() // calculate vertex distance from longest side ln := line{t[longIdx], t[(longIdx+1)%3]} dist := ln.distance(t[(longIdx+2)%3]) return dist <= tol } // longIdx returns index of the longest side. The sides // of the triangles are are as follows: // - Side 0 formed by vertices 0 and 1 // - Side 1 formed by vertices 1 and 2 // - Side 2 formed by vertices 0 and 2 func (t Triangle) longIdx() int { sides := [3]Vec{Sub(t[1], t[0]), Sub(t[2], t[1]), Sub(t[0], t[2])} len2 := [3]float64{Norm2(sides[0]), Norm2(sides[1]), Norm2(sides[2])} longLen := len2[0] longIdx := 0 if len2[1] > longLen { longLen = len2[1] longIdx = 1 } if len2[2] > longLen { longIdx = 2 } return longIdx } // Area returns the surface area of the triangle. func (t Triangle) Area() float64 { // Heron's Formula, see https://en.wikipedia.org/wiki/Heron%27s_formula. // Also see William M. Kahan (24 March 2000). "Miscalculating Area and Angles of a Needle-like Triangle" // for more discussion. https://people.eecs.berkeley.edu/~wkahan/Triangle.pdf. a, b, c := t.orderedLengths() A := (c + (b + a)) * (a - (c - b)) A *= (a + (c - b)) * (c + (b - a)) return math.Sqrt(A) / 4 } // orderedLengths returns the lengths of the sides of the triangle such that // a ≤ b ≤ c. func (t Triangle) orderedLengths() (a, b, c float64) { s1, s2, s3 := t.sides() l1 := Norm(s1) l2 := Norm(s2) l3 := Norm(s3) // sort-3 if l2 < l1 { l1, l2 = l2, l1 } if l3 < l2 { l2, l3 = l3, l2 if l2 < l1 { l1, l2 = l2, l1 } } return l1, l2, l3 } // sides returns vectors for each of the sides of t. func (t Triangle) sides() (Vec, Vec, Vec) { return Sub(t[1], t[0]), Sub(t[2], t[1]), Sub(t[0], t[2]) } // line is an infinite 3D line // defined by two points on the line. type line [2]Vec // vecOnLine takes a value between 0 and 1 to linearly // interpolate a point on the line. // // vecOnLine(0) returns l[0] // vecOnLine(1) returns l[1] func (l line) vecOnLine(t float64) Vec { lineDir := Sub(l[1], l[0]) return Add(l[0], Scale(t, lineDir)) } // distance returns the minimum euclidean distance of point p // to the line. func (l line) distance(p Vec) float64 { // https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html num := Norm(Cross(Sub(p, l[0]), Sub(p, l[1]))) return num / Norm(Sub(l[1], l[0])) }