// Copyright ©2020 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package window import ( "testing" "gonum.org/v1/gonum/floats" ) // want the same value in imag part as in real part, // so use one float64 for both var complexWindowTests = []struct { name string fn func([]complex128) []complex128 want []float64 winLen int }{ { name: "RectangularComplex", fn: RectangularComplex, winLen: 20, want: []float64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, }, { name: "SineComplex", fn: SineComplex, winLen: 20, want: []float64{0.000000, 0.164595, 0.324699, 0.475947, 0.614213, 0.735724, 0.837166, 0.915773, 0.969400, 0.996584, 0.996584, 0.969400, 0.915773, 0.837166, 0.735724, 0.614213, 0.475947, 0.324699, 0.164595, 0.000000}, }, { name: "LanczosComplex", fn: LanczosComplex, winLen: 20, want: []float64{0.000000, 0.115514, 0.247646, 0.389468, 0.532984, 0.669692, 0.791213, 0.889915, 0.959492, 0.995450, 0.995450, 0.959492, 0.889915, 0.791213, 0.669692, 0.532984, 0.389468, 0.247646, 0.115514, 0.000000}, }, // This case tests Lanczos for a NaN condition. The Lanczos NaN condition is k=(N-1)/2, that is when N is odd. { name: "LanczosComplexOdd", fn: LanczosComplex, winLen: 21, want: []float64{0.000000, 0.109292, 0.233872, 0.367883, 0.504551, 0.636620, 0.756827, 0.858394, 0.935489, 0.983632, 1.000000, 0.983632, 0.935489, 0.858394, 0.756827, 0.636620, 0.504551, 0.367883, 0.233872, 0.109292, 0.000000}, }, { name: "TriangularComplex", fn: TriangularComplex, winLen: 20, want: []float64{0.000000, 0.105263, 0.210526, 0.315789, 0.421053, 0.526316, 0.631579, 0.736842, 0.842105, 0.947368, 0.947368, 0.842105, 0.736842, 0.631579, 0.526316, 0.421053, 0.315789, 0.210526, 0.105263, 0.000000}, }, { name: "HannComplex", fn: HannComplex, winLen: 20, want: []float64{0.000000, 0.027091, 0.105430, 0.226526, 0.377257, 0.541290, 0.700848, 0.838641, 0.939737, 0.993181, 0.993181, 0.939737, 0.838641, 0.700848, 0.541290, 0.377257, 0.226526, 0.105430, 0.027091, 0.000000}, }, { name: "BartlettHannComplex", fn: BartlettHannComplex, winLen: 20, want: []float64{0.000000, 0.045853, 0.130653, 0.247949, 0.387768, 0.537696, 0.684223, 0.814209, 0.916305, 0.982186, 0.982186, 0.916305, 0.814209, 0.684223, 0.537696, 0.387768, 0.247949, 0.130653, 0.045853, 0.000000}, }, { name: "HammingComplex", fn: HammingComplex, winLen: 20, want: []float64{0.086957, 0.111692, 0.183218, 0.293785, 0.431408, 0.581178, 0.726861, 0.852672, 0.944977, 0.993774, 0.993774, 0.944977, 0.852672, 0.726861, 0.581178, 0.431409, 0.293785, 0.183218, 0.111692, 0.086957}, }, { name: "BlackmanComplex", fn: BlackmanComplex, winLen: 20, want: []float64{0.000000, 0.010223, 0.045069, 0.114390, 0.226899, 0.382381, 0.566665, 0.752034, 0.903493, 0.988846, 0.988846, 0.903493, 0.752034, 0.566665, 0.382381, 0.226899, 0.114390, 0.045069, 0.010223, 0.000000}, }, { name: "BlackmanHarrisComplex", fn: BlackmanHarrisComplex, winLen: 20, want: []float64{0.000060, 0.002018, 0.012795, 0.046450, 0.122540, 0.256852, 0.448160, 0.668576, 0.866426, 0.984278, 0.984278, 0.866426, 0.668576, 0.448160, 0.256852, 0.122540, 0.046450, 0.012795, 0.002018, 0.000060}, }, { name: "NuttallComplex", fn: NuttallComplex, winLen: 20, want: []float64{0.000000, 0.001706, 0.011614, 0.043682, 0.117808, 0.250658, 0.441946, 0.664015, 0.864348, 0.984019, 0.984019, 0.864348, 0.664015, 0.441946, 0.250658, 0.117808, 0.043682, 0.011614, 0.001706, 0.000000}, }, { name: "BlackmanNuttallComplex", fn: BlackmanNuttallComplex, winLen: 20, want: []float64{0.000363, 0.002885, 0.015360, 0.051652, 0.130567, 0.266629, 0.457501, 0.675215, 0.869392, 0.984644, 0.984644, 0.869392, 0.675215, 0.457501, 0.266629, 0.130567, 0.051652, 0.015360, 0.002885, 0.000363}, }, { name: "FlatTopComplex", fn: FlatTopComplex, winLen: 20, want: []float64{-0.000421, -0.003687, -0.017675, -0.045939, -0.070137, -0.037444, 0.115529, 0.402051, 0.737755, 0.967756, 0.967756, 0.737755, 0.402051, 0.115529, -0.037444, -0.070137, -0.045939, -0.017675, -0.003687, -0.000421}, }, } // want the same value in imag part as in real part, // so use one float64 for both var complexGausWindowTests = []struct { name string sigma float64 want []float64 }{ { name: "GaussianComplex (sigma=0.3)", sigma: 0.3, want: []float64{0.003866, 0.011708, 0.031348, 0.074214, 0.155344, 0.287499, 0.470444, 0.680632, 0.870660, 0.984728, 0.984728, 0.870660, 0.680632, 0.470444, 0.287499, 0.155344, 0.074214, 0.031348, 0.011708, 0.003866}, }, { name: "GaussianComplex (sigma=0.5)", sigma: 0.5, want: []float64{0.135335, 0.201673, 0.287499, 0.392081, 0.511524, 0.638423, 0.762260, 0.870660, 0.951361, 0.994475, 0.994475, 0.951361, 0.870660, 0.762260, 0.638423, 0.511524, 0.392081, 0.287499, 0.201673, 0.135335}, }, { name: "GaussianComplex (sigma=1.2)", sigma: 1.2, want: []float64{0.706648, 0.757319, 0.805403, 0.849974, 0.890135, 0.925049, 0.953963, 0.976241, 0.991381, 0.999039, 0.999039, 0.991381, 0.976241, 0.953963, 0.925049, 0.890135, 0.849974, 0.805403, 0.757319, 0.706648}, }, } func TestWindowsComplex(t *testing.T) { const tol = 1e-6 for _, test := range complexWindowTests { t.Run(test.name, func(t *testing.T) { src := make([]complex128, test.winLen) for i := range src { src[i] = complex(1, 1) } dst := test.fn(src) if !equalApprox(dst, test.want, tol) { t.Errorf("unexpected result for window function %q:\ngot:%v\nwant:%v", test.name, dst, test.want) } }) } } func TestGausWindowComplex(t *testing.T) { const tol = 1e-6 src := make([]complex128, 20) for i := range src { src[i] = complex(1, 1) } for _, test := range complexGausWindowTests { t.Run(test.name, func(t *testing.T) { // Copy the input since we are mutating it. srcCpy := make([]complex128, len(src)) copy(srcCpy, src) dst := GaussianComplex(srcCpy, test.sigma) if !equalApprox(dst, test.want, tol) { t.Errorf("unexpected result for window function %q:\ngot:%v\nwant:%v", test.name, dst, test.want) } }) } } func equalApprox(seq1 []complex128, seq2 []float64, tol float64) bool { if len(seq1) != len(seq2) { return false } for i := range seq1 { if !floats.EqualWithinAbsOrRel(real(seq1[i]), seq2[i], tol, tol) { return false } if !floats.EqualWithinAbsOrRel(imag(seq1[i]), seq2[i], tol, tol) { return false } } return true }