// Copyright ©2014 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package simple import ( "sort" "gonum.org/v1/gonum/graph" "gonum.org/v1/gonum/graph/internal/ordered" "gonum.org/v1/gonum/mat" ) // UndirectedMatrix represents an undirected graph using an adjacency // matrix such that all IDs are in a contiguous block from 0 to n-1. // Edges are stored implicitly as an edge weight, so edges stored in // the graph are not recoverable. type UndirectedMatrix struct { mat *mat.SymDense nodes []graph.Node self float64 absent float64 } // NewUndirectedMatrix creates an undirected dense graph with n nodes. // All edges are initialized with the weight given by init. The self parameter // specifies the cost of self connection, and absent specifies the weight // returned for absent edges. func NewUndirectedMatrix(n int, init, self, absent float64) *UndirectedMatrix { matrix := make([]float64, n*n) if init != 0 { for i := range matrix { matrix[i] = init } } for i := 0; i < len(matrix); i += n + 1 { matrix[i] = self } return &UndirectedMatrix{ mat: mat.NewSymDense(n, matrix), self: self, absent: absent, } } // NewUndirectedMatrixFrom creates an undirected dense graph with the given nodes. // The IDs of the nodes must be contiguous from 0 to len(nodes)-1, but may // be in any order. If IDs are not contiguous NewUndirectedMatrixFrom will panic. // All edges are initialized with the weight given by init. The self parameter // specifies the cost of self connection, and absent specifies the weight // returned for absent edges. func NewUndirectedMatrixFrom(nodes []graph.Node, init, self, absent float64) *UndirectedMatrix { sort.Sort(ordered.ByID(nodes)) for i, n := range nodes { if int64(i) != n.ID() { panic("simple: non-contiguous node IDs") } } g := NewUndirectedMatrix(len(nodes), init, self, absent) g.nodes = nodes return g } // Node returns the node in the graph with the given ID. func (g *UndirectedMatrix) Node(id int64) graph.Node { if !g.has(id) { return nil } if g.nodes == nil { return Node(id) } return g.nodes[id] } // Has returns whether the node exists within the graph. func (g *UndirectedMatrix) Has(n graph.Node) bool { return g.has(n.ID()) } func (g *UndirectedMatrix) has(id int64) bool { r := g.mat.Symmetric() return 0 <= id && id < int64(r) } // Nodes returns all the nodes in the graph. func (g *UndirectedMatrix) Nodes() []graph.Node { if g.nodes != nil { nodes := make([]graph.Node, len(g.nodes)) copy(nodes, g.nodes) return nodes } r := g.mat.Symmetric() nodes := make([]graph.Node, r) for i := 0; i < r; i++ { nodes[i] = Node(i) } return nodes } // Edges returns all the edges in the graph. func (g *UndirectedMatrix) Edges() []graph.Edge { var edges []graph.Edge r, _ := g.mat.Dims() for i := 0; i < r; i++ { for j := i + 1; j < r; j++ { if w := g.mat.At(i, j); !isSame(w, g.absent) { edges = append(edges, Edge{F: g.Node(int64(i)), T: g.Node(int64(j)), W: w}) } } } return edges } // From returns all nodes in g that can be reached directly from n. func (g *UndirectedMatrix) From(n graph.Node) []graph.Node { id := n.ID() if !g.has(id) { return nil } var neighbors []graph.Node r := g.mat.Symmetric() for i := 0; i < r; i++ { if int64(i) == id { continue } // id is not greater than maximum int by this point. if !isSame(g.mat.At(int(id), i), g.absent) { neighbors = append(neighbors, g.Node(int64(i))) } } return neighbors } // HasEdgeBetween returns whether an edge exists between nodes x and y. func (g *UndirectedMatrix) HasEdgeBetween(u, v graph.Node) bool { uid := u.ID() if !g.has(uid) { return false } vid := v.ID() if !g.has(vid) { return false } // uid and vid are not greater than maximum int by this point. return uid != vid && !isSame(g.mat.At(int(uid), int(vid)), g.absent) } // Edge returns the edge from u to v if such an edge exists and nil otherwise. // The node v must be directly reachable from u as defined by the From method. func (g *UndirectedMatrix) Edge(u, v graph.Node) graph.Edge { return g.EdgeBetween(u, v) } // EdgeBetween returns the edge between nodes x and y. func (g *UndirectedMatrix) EdgeBetween(u, v graph.Node) graph.Edge { if g.HasEdgeBetween(u, v) { // u.ID() and v.ID() are not greater than maximum int by this point. return Edge{F: g.Node(u.ID()), T: g.Node(v.ID()), W: g.mat.At(int(u.ID()), int(v.ID()))} } return nil } // Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge. // If x and y are the same node or there is no joining edge between the two nodes the weight // value returned is either the graph's absent or self value. Weight returns true if an edge // exists between x and y or if x and y have the same ID, false otherwise. func (g *UndirectedMatrix) Weight(x, y graph.Node) (w float64, ok bool) { xid := x.ID() yid := y.ID() if xid == yid { return g.self, true } if g.has(xid) && g.has(yid) { // xid and yid are not greater than maximum int by this point. return g.mat.At(int(xid), int(yid)), true } return g.absent, false } // SetEdge sets e, an edge from one node to another. If the ends of the edge are not in g // or the edge is a self loop, SetEdge panics. func (g *UndirectedMatrix) SetEdge(e graph.Edge) { fid := e.From().ID() tid := e.To().ID() if fid == tid { panic("simple: set illegal edge") } if int64(int(fid)) != fid { panic("simple: unavailable from node ID for dense graph") } if int64(int(tid)) != tid { panic("simple: unavailable to node ID for dense graph") } // fid and tid are not greater than maximum int by this point. g.mat.SetSym(int(fid), int(tid), e.Weight()) } // RemoveEdge removes e from the graph, leaving the terminal nodes. If the edge does not exist // it is a no-op. func (g *UndirectedMatrix) RemoveEdge(e graph.Edge) { fid := e.From().ID() if !g.has(fid) { return } tid := e.To().ID() if !g.has(tid) { return } // fid and tid are not greater than maximum int by this point. g.mat.SetSym(int(fid), int(tid), g.absent) } // Degree returns the degree of n in g. func (g *UndirectedMatrix) Degree(n graph.Node) int { id := n.ID() if !g.has(id) { return 0 } var deg int r := g.mat.Symmetric() for i := 0; i < r; i++ { if int64(i) == id { continue } // id is not greater than maximum int by this point. if !isSame(g.mat.At(int(id), i), g.absent) { deg++ } } return deg } // Matrix returns the mat.Matrix representation of the graph. func (g *UndirectedMatrix) Matrix() mat.Matrix { // Prevent alteration of dimensions of the returned matrix. m := *g.mat return &m }