// Copyright ©2015 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package functions import ( "math" "github.com/gonum/floats" "github.com/gonum/matrix/mat64" ) // Beale implements the Beale's function. // // Standard starting points: // Easy: [1, 1] // Hard: [1, 4] // // References: // - Beale, E.: On an Iterative Method for Finding a Local Minimum of a // Function of More than One Variable. Technical Report 25, Statistical // Techniques Research Group, Princeton University (1958) // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type Beale struct{} func (Beale) Func(x []float64) float64 { if len(x) != 2 { panic("dimension of the problem must be 2") } f1 := 1.5 - x[0]*(1-x[1]) f2 := 2.25 - x[0]*(1-x[1]*x[1]) f3 := 2.625 - x[0]*(1-x[1]*x[1]*x[1]) return f1*f1 + f2*f2 + f3*f3 } func (Beale) Grad(grad, x []float64) { if len(x) != 2 { panic("dimension of the problem must be 2") } if len(x) != len(grad) { panic("incorrect size of the gradient") } t1 := 1 - x[1] t2 := 1 - x[1]*x[1] t3 := 1 - x[1]*x[1]*x[1] f1 := 1.5 - x[0]*t1 f2 := 2.25 - x[0]*t2 f3 := 2.625 - x[0]*t3 grad[0] = -2 * (f1*t1 + f2*t2 + f3*t3) grad[1] = 2 * x[0] * (f1 + 2*f2*x[1] + 3*f3*x[1]*x[1]) } func (Beale) Hess(hess mat64.MutableSymmetric, x []float64) { if len(x) != 2 { panic("dimension of the problem must be 2") } if len(x) != hess.Symmetric() { panic("incorrect size of the Hessian") } t1 := 1 - x[1] t2 := 1 - x[1]*x[1] t3 := 1 - x[1]*x[1]*x[1] f1 := 1.5 - x[1]*t1 f2 := 2.25 - x[1]*t2 f3 := 2.625 - x[1]*t3 h00 := 2 * (t1*t1 + t2*t2 + t3*t3) h01 := 2 * (f1 + x[1]*(2*f2+3*x[1]*f3) - x[0]*(t1+x[1]*(2*t2+3*x[1]*t3))) h11 := 2 * x[0] * (x[0] + 2*f2 + x[1]*(6*f3+x[0]*x[1]*(4+9*x[1]*x[1]))) hess.SetSym(0, 0, h00) hess.SetSym(0, 1, h01) hess.SetSym(1, 1, h11) } func (Beale) Minima() []Minimum { return []Minimum{ { X: []float64{3, 0.5}, F: 0, Global: true, }, } } // BiggsEXP2 implements the the Biggs' EXP2 function. // // Standard starting point: // [1, 2] // // Reference: // Biggs, M.C.: Minimization algorithms making use of non-quadratic properties // of the objective function. IMA J Appl Math 8 (1971), 315-327; doi:10.1093/imamat/8.3.315 type BiggsEXP2 struct{} func (BiggsEXP2) Func(x []float64) (sum float64) { if len(x) != 2 { panic("dimension of the problem must be 2") } for i := 1; i <= 10; i++ { z := float64(i) / 10 y := math.Exp(-z) - 5*math.Exp(-10*z) f := math.Exp(-x[0]*z) - 5*math.Exp(-x[1]*z) - y sum += f * f } return sum } func (BiggsEXP2) Grad(grad, x []float64) { if len(x) != 2 { panic("dimension of the problem must be 2") } if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := range grad { grad[i] = 0 } for i := 1; i <= 10; i++ { z := float64(i) / 10 y := math.Exp(-z) - 5*math.Exp(-10*z) f := math.Exp(-x[0]*z) - 5*math.Exp(-x[1]*z) - y dfdx0 := -z * math.Exp(-x[0]*z) dfdx1 := 5 * z * math.Exp(-x[1]*z) grad[0] += 2 * f * dfdx0 grad[1] += 2 * f * dfdx1 } } func (BiggsEXP2) Minima() []Minimum { return []Minimum{ { X: []float64{1, 10}, F: 0, Global: true, }, } } // BiggsEXP3 implements the the Biggs' EXP3 function. // // Standard starting point: // [1, 2, 1] // // Reference: // Biggs, M.C.: Minimization algorithms making use of non-quadratic properties // of the objective function. IMA J Appl Math 8 (1971), 315-327; doi:10.1093/imamat/8.3.315 type BiggsEXP3 struct{} func (BiggsEXP3) Func(x []float64) (sum float64) { if len(x) != 3 { panic("dimension of the problem must be 3") } for i := 1; i <= 10; i++ { z := float64(i) / 10 y := math.Exp(-z) - 5*math.Exp(-10*z) f := math.Exp(-x[0]*z) - x[2]*math.Exp(-x[1]*z) - y sum += f * f } return sum } func (BiggsEXP3) Grad(grad, x []float64) { if len(x) != 3 { panic("dimension of the problem must be 3") } if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := range grad { grad[i] = 0 } for i := 1; i <= 10; i++ { z := float64(i) / 10 y := math.Exp(-z) - 5*math.Exp(-10*z) f := math.Exp(-x[0]*z) - x[2]*math.Exp(-x[1]*z) - y dfdx0 := -z * math.Exp(-x[0]*z) dfdx1 := x[2] * z * math.Exp(-x[1]*z) dfdx2 := -math.Exp(-x[1] * z) grad[0] += 2 * f * dfdx0 grad[1] += 2 * f * dfdx1 grad[2] += 2 * f * dfdx2 } } func (BiggsEXP3) Minima() []Minimum { return []Minimum{ { X: []float64{1, 10, 5}, F: 0, Global: true, }, } } // BiggsEXP4 implements the the Biggs' EXP4 function. // // Standard starting point: // [1, 2, 1, 1] // // Reference: // Biggs, M.C.: Minimization algorithms making use of non-quadratic properties // of the objective function. IMA J Appl Math 8 (1971), 315-327; doi:10.1093/imamat/8.3.315 type BiggsEXP4 struct{} func (BiggsEXP4) Func(x []float64) (sum float64) { if len(x) != 4 { panic("dimension of the problem must be 4") } for i := 1; i <= 10; i++ { z := float64(i) / 10 y := math.Exp(-z) - 5*math.Exp(-10*z) f := x[2]*math.Exp(-x[0]*z) - x[3]*math.Exp(-x[1]*z) - y sum += f * f } return sum } func (BiggsEXP4) Grad(grad, x []float64) { if len(x) != 4 { panic("dimension of the problem must be 4") } if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := range grad { grad[i] = 0 } for i := 1; i <= 10; i++ { z := float64(i) / 10 y := math.Exp(-z) - 5*math.Exp(-10*z) f := x[2]*math.Exp(-x[0]*z) - x[3]*math.Exp(-x[1]*z) - y dfdx0 := -z * x[2] * math.Exp(-x[0]*z) dfdx1 := z * x[3] * math.Exp(-x[1]*z) dfdx2 := math.Exp(-x[0] * z) dfdx3 := -math.Exp(-x[1] * z) grad[0] += 2 * f * dfdx0 grad[1] += 2 * f * dfdx1 grad[2] += 2 * f * dfdx2 grad[3] += 2 * f * dfdx3 } } func (BiggsEXP4) Minima() []Minimum { return []Minimum{ { X: []float64{1, 10, 1, 5}, F: 0, Global: true, }, } } // BiggsEXP5 implements the the Biggs' EXP5 function. // // Standard starting point: // [1, 2, 1, 1, 1] // // Reference: // Biggs, M.C.: Minimization algorithms making use of non-quadratic properties // of the objective function. IMA J Appl Math 8 (1971), 315-327; doi:10.1093/imamat/8.3.315 type BiggsEXP5 struct{} func (BiggsEXP5) Func(x []float64) (sum float64) { if len(x) != 5 { panic("dimension of the problem must be 5") } for i := 1; i <= 11; i++ { z := float64(i) / 10 y := math.Exp(-z) - 5*math.Exp(-10*z) + 3*math.Exp(-4*z) f := x[2]*math.Exp(-x[0]*z) - x[3]*math.Exp(-x[1]*z) + 3*math.Exp(-x[4]*z) - y sum += f * f } return sum } func (BiggsEXP5) Grad(grad, x []float64) { if len(x) != 5 { panic("dimension of the problem must be 5") } if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := range grad { grad[i] = 0 } for i := 1; i <= 11; i++ { z := float64(i) / 10 y := math.Exp(-z) - 5*math.Exp(-10*z) + 3*math.Exp(-4*z) f := x[2]*math.Exp(-x[0]*z) - x[3]*math.Exp(-x[1]*z) + 3*math.Exp(-x[4]*z) - y dfdx0 := -z * x[2] * math.Exp(-x[0]*z) dfdx1 := z * x[3] * math.Exp(-x[1]*z) dfdx2 := math.Exp(-x[0] * z) dfdx3 := -math.Exp(-x[1] * z) dfdx4 := -3 * z * math.Exp(-x[4]*z) grad[0] += 2 * f * dfdx0 grad[1] += 2 * f * dfdx1 grad[2] += 2 * f * dfdx2 grad[3] += 2 * f * dfdx3 grad[4] += 2 * f * dfdx4 } } func (BiggsEXP5) Minima() []Minimum { return []Minimum{ { X: []float64{1, 10, 1, 5, 4}, F: 0, Global: true, }, } } // BiggsEXP6 implements the the Biggs' EXP6 function. // // Standard starting point: // [1, 2, 1, 1, 1, 1] // // References: // - Biggs, M.C.: Minimization algorithms making use of non-quadratic // properties of the objective function. IMA J Appl Math 8 (1971), 315-327; // doi:10.1093/imamat/8.3.315 // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type BiggsEXP6 struct{} func (BiggsEXP6) Func(x []float64) (sum float64) { if len(x) != 6 { panic("dimension of the problem must be 6") } for i := 1; i <= 13; i++ { z := float64(i) / 10 y := math.Exp(-z) - 5*math.Exp(-10*z) + 3*math.Exp(-4*z) f := x[2]*math.Exp(-x[0]*z) - x[3]*math.Exp(-x[1]*z) + x[5]*math.Exp(-x[4]*z) - y sum += f * f } return sum } func (BiggsEXP6) Grad(grad, x []float64) { if len(x) != 6 { panic("dimension of the problem must be 6") } if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := range grad { grad[i] = 0 } for i := 1; i <= 13; i++ { z := float64(i) / 10 y := math.Exp(-z) - 5*math.Exp(-10*z) + 3*math.Exp(-4*z) f := x[2]*math.Exp(-x[0]*z) - x[3]*math.Exp(-x[1]*z) + x[5]*math.Exp(-x[4]*z) - y dfdx0 := -z * x[2] * math.Exp(-x[0]*z) dfdx1 := z * x[3] * math.Exp(-x[1]*z) dfdx2 := math.Exp(-x[0] * z) dfdx3 := -math.Exp(-x[1] * z) dfdx4 := -z * x[5] * math.Exp(-x[4]*z) dfdx5 := math.Exp(-x[4] * z) grad[0] += 2 * f * dfdx0 grad[1] += 2 * f * dfdx1 grad[2] += 2 * f * dfdx2 grad[3] += 2 * f * dfdx3 grad[4] += 2 * f * dfdx4 grad[5] += 2 * f * dfdx5 } } func (BiggsEXP6) Minima() []Minimum { return []Minimum{ { X: []float64{1, 10, 1, 5, 4, 3}, F: 0, Global: true, }, { X: []float64{1.7114159947956764, 17.68319817846745, 1.1631436609697268, 5.1865615510738605, 1.7114159947949301, 1.1631436609697998}, F: 0.005655649925499929, Global: false, }, { // X: []float64{1.22755594752403, X[1] >> 0, 0.83270306333466, X[3] << 0, X[4] = X[0], X[5] = X[2]}, X: []float64{1.22755594752403, 1000, 0.83270306333466, -1000, 1.22755594752403, 0.83270306333466}, F: 0.306366772624790, Global: false, }, } } // Box3D implements the Box' three-dimensional function. // // Standard starting point: // [0, 10, 20] // // References: // - Box, M.J.: A comparison of several current optimization methods, and the // use of transformations in constrained problems. Comput J 9 (1966), 67-77 // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type Box3D struct{} func (Box3D) Func(x []float64) (sum float64) { if len(x) != 3 { panic("dimension of the problem must be 3") } for i := 1; i <= 10; i++ { c := -float64(i) / 10 y := math.Exp(c) - math.Exp(10*c) f := math.Exp(c*x[0]) - math.Exp(c*x[1]) - x[2]*y sum += f * f } return sum } func (Box3D) Grad(grad, x []float64) { if len(x) != 3 { panic("dimension of the problem must be 3") } if len(x) != len(grad) { panic("incorrect size of the gradient") } grad[0] = 0 grad[1] = 0 grad[2] = 0 for i := 1; i <= 10; i++ { c := -float64(i) / 10 y := math.Exp(c) - math.Exp(10*c) f := math.Exp(c*x[0]) - math.Exp(c*x[1]) - x[2]*y grad[0] += 2 * f * c * math.Exp(c*x[0]) grad[1] += -2 * f * c * math.Exp(c*x[1]) grad[2] += -2 * f * y } } func (Box3D) Minima() []Minimum { return []Minimum{ { X: []float64{1, 10, 1}, F: 0, Global: true, }, { X: []float64{10, 1, -1}, F: 0, Global: true, }, { // Any point at the line {a, a, 0}. X: []float64{1, 1, 0}, F: 0, Global: true, }, } } // BrownBadlyScaled implements the Brown's badly scaled function. // // Standard starting point: // [1, 1] // // References: // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type BrownBadlyScaled struct{} func (BrownBadlyScaled) Func(x []float64) float64 { if len(x) != 2 { panic("dimension of the problem must be 2") } f1 := x[0] - 1e6 f2 := x[1] - 2e-6 f3 := x[0]*x[1] - 2 return f1*f1 + f2*f2 + f3*f3 } func (BrownBadlyScaled) Grad(grad, x []float64) { if len(x) != 2 { panic("dimension of the problem must be 2") } if len(x) != len(grad) { panic("incorrect size of the gradient") } f1 := x[0] - 1e6 f2 := x[1] - 2e-6 f3 := x[0]*x[1] - 2 grad[0] = 2*f1 + 2*f3*x[1] grad[1] = 2*f2 + 2*f3*x[0] } func (BrownBadlyScaled) Hess(hess mat64.MutableSymmetric, x []float64) { if len(x) != 2 { panic("dimension of the problem must be 2") } if len(x) != hess.Symmetric() { panic("incorrect size of the Hessian") } h00 := 2 + 2*x[1]*x[1] h01 := 4*x[0]*x[1] - 4 h11 := 2 + 2*x[0]*x[0] hess.SetSym(0, 0, h00) hess.SetSym(0, 1, h01) hess.SetSym(1, 1, h11) } func (BrownBadlyScaled) Minima() []Minimum { return []Minimum{ { X: []float64{1e6, 2e-6}, F: 0, Global: true, }, } } // BrownAndDennis implements the Brown and Dennis function. // // Standard starting point: // [25, 5, -5, -1] // // References: // - Brown, K.M., Dennis, J.E.: New computational algorithms for minimizing a // sum of squares of nonlinear functions. Research Report Number 71-6, Yale // University (1971) // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type BrownAndDennis struct{} func (BrownAndDennis) Func(x []float64) (sum float64) { if len(x) != 4 { panic("dimension of the problem must be 4") } for i := 1; i <= 20; i++ { c := float64(i) / 5 f1 := x[0] + c*x[1] - math.Exp(c) f2 := x[2] + x[3]*math.Sin(c) - math.Cos(c) f := f1*f1 + f2*f2 sum += f * f } return sum } func (BrownAndDennis) Grad(grad, x []float64) { if len(x) != 4 { panic("dimension of the problem must be 4") } if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := range grad { grad[i] = 0 } for i := 1; i <= 20; i++ { c := float64(i) / 5 f1 := x[0] + c*x[1] - math.Exp(c) f2 := x[2] + x[3]*math.Sin(c) - math.Cos(c) f := f1*f1 + f2*f2 grad[0] += 4 * f * f1 grad[1] += 4 * f * f1 * c grad[2] += 4 * f * f2 grad[3] += 4 * f * f2 * math.Sin(c) } } func (BrownAndDennis) Hess(hess mat64.MutableSymmetric, x []float64) { if len(x) != 4 { panic("dimension of the problem must be 4") } if len(x) != hess.Symmetric() { panic("incorrect size of the Hessian") } for i := 0; i < 4; i++ { for j := i; j < 4; j++ { hess.SetSym(i, j, 0) } } for i := 1; i <= 20; i++ { d1 := float64(i) / 5 d2 := math.Sin(d1) t1 := x[0] + d1*x[1] - math.Exp(d1) t2 := x[2] + d2*x[3] - math.Cos(d1) t := t1*t1 + t2*t2 s3 := 2 * t1 * t2 r1 := t + 2*t1*t1 r2 := t + 2*t2*t2 hess.SetSym(0, 0, hess.At(0, 0)+r1) hess.SetSym(0, 1, hess.At(0, 1)+d1*r1) hess.SetSym(1, 1, hess.At(1, 1)+d1*d1*r1) hess.SetSym(0, 2, hess.At(0, 2)+s3) hess.SetSym(1, 2, hess.At(1, 2)+d1*s3) hess.SetSym(2, 2, hess.At(2, 2)+r2) hess.SetSym(0, 3, hess.At(0, 3)+d2*s3) hess.SetSym(1, 3, hess.At(1, 3)+d1*d2*s3) hess.SetSym(2, 3, hess.At(2, 3)+d2*r2) hess.SetSym(3, 3, hess.At(3, 3)+d2*d2*r2) } for i := 0; i < 4; i++ { for j := i; j < 4; j++ { hess.SetSym(i, j, 4*hess.At(i, j)) } } } func (BrownAndDennis) Minima() []Minimum { return []Minimum{ { X: []float64{-11.594439904762162, 13.203630051207202, -0.4034394881768612, 0.2367787744557347}, F: 85822.20162635634, Global: true, }, } } // ExtendedPowellSingular implements the extended Powell's function. // Its Hessian matrix is singular at the minimizer. // // Standard starting point: // [3, -1, 0, 3, 3, -1, 0, 3, ..., 3, -1, 0, 3] // // References: // - Spedicato E.: Computational experience with quasi-Newton algorithms for // minimization problems of moderatly large size. Towards Global // Optimization 2 (1978), 209-219 // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type ExtendedPowellSingular struct{} func (ExtendedPowellSingular) Func(x []float64) (sum float64) { if len(x)%4 != 0 { panic("dimension of the problem must be a multiple of 4") } for i := 0; i < len(x); i += 4 { f1 := x[i] + 10*x[i+1] f2 := x[i+2] - x[i+3] t := x[i+1] - 2*x[i+2] f3 := t * t t = x[i] - x[i+3] f4 := t * t sum += f1*f1 + 5*f2*f2 + f3*f3 + 10*f4*f4 } return sum } func (ExtendedPowellSingular) Grad(grad, x []float64) { if len(x)%4 != 0 { panic("dimension of the problem must be a multiple of 4") } if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := 0; i < len(x); i += 4 { f1 := x[i] + 10*x[i+1] f2 := x[i+2] - x[i+3] t1 := x[i+1] - 2*x[i+2] f3 := t1 * t1 t2 := x[i] - x[i+3] f4 := t2 * t2 grad[i] = 2*f1 + 40*f4*t2 grad[i+1] = 20*f1 + 4*f3*t1 grad[i+2] = 10*f2 - 8*f3*t1 grad[i+3] = -10*f2 - 40*f4*t2 } } func (ExtendedPowellSingular) Minima() []Minimum { return []Minimum{ { X: []float64{0, 0, 0, 0}, F: 0, Global: true, }, { X: []float64{0, 0, 0, 0, 0, 0, 0, 0}, F: 0, Global: true, }, { X: []float64{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, F: 0, Global: true, }, } } // ExtendedRosenbrock implements the extended, multidimensional Rosenbrock // function. // // Standard starting point: // Easy: [-1.2, 1, -1.2, 1, ...] // Hard: any point far from the minimum // // References: // - Rosenbrock, H.H.: An Automatic Method for Finding the Greatest or Least // Value of a Function. Computer J 3 (1960), 175-184 // - http://en.wikipedia.org/wiki/Rosenbrock_function type ExtendedRosenbrock struct{} func (ExtendedRosenbrock) Func(x []float64) (sum float64) { for i := 0; i < len(x)-1; i++ { a := 1 - x[i] b := x[i+1] - x[i]*x[i] sum += a*a + 100*b*b } return sum } func (ExtendedRosenbrock) Grad(grad, x []float64) { if len(x) != len(grad) { panic("incorrect size of the gradient") } dim := len(x) for i := range grad { grad[i] = 0 } for i := 0; i < dim-1; i++ { grad[i] -= 2 * (1 - x[i]) grad[i] -= 400 * (x[i+1] - x[i]*x[i]) * x[i] } for i := 1; i < dim; i++ { grad[i] += 200 * (x[i] - x[i-1]*x[i-1]) } } func (ExtendedRosenbrock) Minima() []Minimum { return []Minimum{ { X: []float64{1, 1}, F: 0, Global: true, }, { X: []float64{1, 1, 1}, F: 0, Global: true, }, { X: []float64{1, 1, 1, 1}, F: 0, Global: true, }, { X: []float64{-0.7756592265653526, 0.6130933654850433, 0.38206284633839305, 0.14597201855219452}, F: 3.701428610430017, Global: false, }, { X: []float64{1, 1, 1, 1, 1}, F: 0, Global: true, }, { X: []float64{-0.9620510206947502, 0.9357393959767103, 0.8807136041943204, 0.7778776758544063, 0.6050936785926526}, F: 3.930839434133027, Global: false, }, { X: []float64{-0.9865749795709938, 0.9833982288361819, 0.972106670053092, 0.9474374368264362, 0.8986511848517299, 0.8075739520354182}, F: 3.973940500930295, Global: false, }, { X: []float64{-0.9917225725614055, 0.9935553935033712, 0.992173321594692, 0.9868987626903134, 0.975164756608872, 0.9514319827049906, 0.9052228177139495}, F: 3.9836005364248543, Global: false, }, { X: []float64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, F: 0, Global: true, }, } } // Gaussian implements the Gaussian function. // The function has one global minimum and a number of false local minima // caused by the finite floating point precision. // // Standard starting point: // [0.4, 1, 0] // // Reference: // More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization // software. ACM Trans Math Softw 7 (1981), 17-41 type Gaussian struct{} func (Gaussian) y(i int) (yi float64) { switch i { case 1, 15: yi = 0.0009 case 2, 14: yi = 0.0044 case 3, 13: yi = 0.0175 case 4, 12: yi = 0.0540 case 5, 11: yi = 0.1295 case 6, 10: yi = 0.2420 case 7, 9: yi = 0.3521 case 8: yi = 0.3989 } return yi } func (g Gaussian) Func(x []float64) (sum float64) { if len(x) != 3 { panic("dimension of the problem must be 3") } for i := 1; i <= 15; i++ { c := 0.5 * float64(8-i) b := c - x[2] d := b * b e := math.Exp(-0.5 * x[1] * d) f := x[0]*e - g.y(i) sum += f * f } return sum } func (g Gaussian) Grad(grad, x []float64) { if len(x) != 3 { panic("dimension of the problem must be 3") } if len(x) != len(grad) { panic("incorrect size of the gradient") } grad[0] = 0 grad[1] = 0 grad[2] = 0 for i := 1; i <= 15; i++ { c := 0.5 * float64(8-i) b := c - x[2] d := b * b e := math.Exp(-0.5 * x[1] * d) f := x[0]*e - g.y(i) grad[0] += 2 * f * e grad[1] -= f * e * d * x[0] grad[2] += 2 * f * e * x[0] * x[1] * b } } func (Gaussian) Minima() []Minimum { return []Minimum{ { X: []float64{0.398956137837997, 1.0000190844805048, 0}, F: 1.12793276961912e-08, Global: true, }, } } // GulfResearchAndDevelopment implements the Gulf Research and Development function. // // Standard starting point: // [5, 2.5, 0.15] // // References: // - Cox, R.A.: Comparison of the performance of seven optimization algorithms // on twelve unconstrained minimization problems. Ref. 1335CNO4, Gulf // Research and Development Company, Pittsburg (1969) // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type GulfResearchAndDevelopment struct{} func (GulfResearchAndDevelopment) Func(x []float64) (sum float64) { if len(x) != 3 { panic("dimension of the problem must be 3") } for i := 1; i <= 99; i++ { arg := float64(i) / 100 r := math.Pow(-50*math.Log(arg), 2.0/3.0) + 25 - x[1] t1 := math.Pow(math.Abs(r), x[2]) / x[0] t2 := math.Exp(-t1) t := t2 - arg sum += t * t } return sum } func (GulfResearchAndDevelopment) Grad(grad, x []float64) { if len(x) != 3 { panic("dimension of the problem must be 3") } if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := range grad { grad[i] = 0 } for i := 1; i <= 99; i++ { arg := float64(i) / 100 r := math.Pow(-50*math.Log(arg), 2.0/3.0) + 25 - x[1] t1 := math.Pow(math.Abs(r), x[2]) / x[0] t2 := math.Exp(-t1) t := t2 - arg s1 := t1 * t2 * t grad[0] += s1 grad[1] += s1 / r grad[2] -= s1 * math.Log(math.Abs(r)) } grad[0] *= 2 / x[0] grad[1] *= 2 * x[2] grad[2] *= 2 } func (GulfResearchAndDevelopment) Minima() []Minimum { return []Minimum{ { X: []float64{50, 25, 1.5}, F: 0, Global: true, }, { X: []float64{99.89529935174151, 60.61453902799833, 9.161242695144592}, F: 32.8345, Global: false, }, { X: []float64{201.662589489426, 60.61633150468155, 10.224891158488965}, F: 32.8345, Global: false, }, } } // HelicalValley implements the helical valley function of Fletcher and Powell. // Function is not defined at x[0] = 0. // // Standard starting point: // [-1, 0, 0] // // References: // - Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for // minimization. Comput J 6 (1963), 163-168 // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type HelicalValley struct{} func (HelicalValley) Func(x []float64) float64 { if len(x) != 3 { panic("dimension of the problem must be 3") } if x[0] == 0 { panic("function not defined at x[0] = 0") } theta := 0.5 * math.Atan(x[1]/x[0]) / math.Pi if x[0] < 0 { theta += 0.5 } f1 := 10 * (x[2] - 10*theta) f2 := 10 * (math.Hypot(x[0], x[1]) - 1) f3 := x[2] return f1*f1 + f2*f2 + f3*f3 } func (HelicalValley) Grad(grad, x []float64) { if len(x) != 3 { panic("dimension of the problem must be 3") } if len(x) != len(grad) { panic("incorrect size of the gradient") } if x[0] == 0 { panic("function not defined at x[0] = 0") } theta := 0.5 * math.Atan(x[1]/x[0]) / math.Pi if x[0] < 0 { theta += 0.5 } h := math.Hypot(x[0], x[1]) r := 1 / h q := r * r / math.Pi s := x[2] - 10*theta grad[0] = 200 * (5*s*q*x[1] + (h-1)*r*x[0]) grad[1] = 200 * (-5*s*q*x[0] + (h-1)*r*x[1]) grad[2] = 2 * (100*s + x[2]) } func (HelicalValley) Minima() []Minimum { return []Minimum{ { X: []float64{1, 0, 0}, F: 0, Global: true, }, } } // Linear implements a linear function. type Linear struct{} func (Linear) Func(x []float64) float64 { return floats.Sum(x) } func (Linear) Grad(grad, x []float64) { if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := range grad { grad[i] = 1 } } // PenaltyI implements the first penalty function by Gill, Murray and Pitfield. // // Standard starting point: // [1, ..., n] // // References: // - Gill, P.E., Murray, W., Pitfield, R.A.: The implementation of two revised // quasi-Newton algorithms for unconstrained optimization. Report NAC 11, // National Phys Lab (1972), 82-83 // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type PenaltyI struct{} func (PenaltyI) Func(x []float64) (sum float64) { for _, v := range x { sum += (v - 1) * (v - 1) } sum *= 1e-5 var s float64 for _, v := range x { s += v * v } sum += (s - 0.25) * (s - 0.25) return sum } func (PenaltyI) Grad(grad, x []float64) { if len(x) != len(grad) { panic("incorrect size of the gradient") } s := -0.25 for _, v := range x { s += v * v } for i, v := range x { grad[i] = 2 * (2*s*v + 1e-5*(v-1)) } } func (PenaltyI) Minima() []Minimum { return []Minimum{ { X: []float64{0.2500074995875379, 0.2500074995875379, 0.2500074995875379, 0.2500074995875379}, F: 2.2499775008999372e-05, Global: true, }, { X: []float64{0.15812230111311634, 0.15812230111311634, 0.15812230111311634, 0.15812230111311634, 0.15812230111311634, 0.15812230111311634, 0.15812230111311634, 0.15812230111311634, 0.15812230111311634, 0.15812230111311634}, F: 7.087651467090369e-05, Global: true, }, } } // PenaltyII implements the second penalty function by Gill, Murray and Pitfield. // // Standard starting point: // [0.5, ..., 0.5] // // References: // - Gill, P.E., Murray, W., Pitfield, R.A.: The implementation of two revised // quasi-Newton algorithms for unconstrained optimization. Report NAC 11, // National Phys Lab (1972), 82-83 // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type PenaltyII struct{} func (PenaltyII) Func(x []float64) (sum float64) { dim := len(x) s := -1.0 for i, v := range x { s += float64(dim-i) * v * v } for i := 1; i < dim; i++ { yi := math.Exp(float64(i+1)/10) + math.Exp(float64(i)/10) f := math.Exp(x[i]/10) + math.Exp(x[i-1]/10) - yi sum += f * f } for i := 1; i < dim; i++ { f := math.Exp(x[i]/10) - math.Exp(-1.0/10) sum += f * f } sum *= 1e-5 sum += (x[0] - 0.2) * (x[0] - 0.2) sum += s * s return sum } func (PenaltyII) Grad(grad, x []float64) { if len(x) != len(grad) { panic("incorrect size of the gradient") } dim := len(x) s := -1.0 for i, v := range x { s += float64(dim-i) * v * v } for i, v := range x { grad[i] = 4 * s * float64(dim-i) * v } for i := 1; i < dim; i++ { yi := math.Exp(float64(i+1)/10) + math.Exp(float64(i)/10) f := math.Exp(x[i]/10) + math.Exp(x[i-1]/10) - yi grad[i] += 1e-5 * f * math.Exp(x[i]/10) / 5 grad[i-1] += 1e-5 * f * math.Exp(x[i-1]/10) / 5 } for i := 1; i < dim; i++ { f := math.Exp(x[i]/10) - math.Exp(-1.0/10) grad[i] += 1e-5 * f * math.Exp(x[i]/10) / 5 } grad[0] += 2 * (x[0] - 0.2) } func (PenaltyII) Minima() []Minimum { return []Minimum{ { X: []float64{0.19999933335, 0.19131670128566283, 0.4801014860897, 0.5188454026659}, F: 9.376293007355449e-06, Global: true, }, { X: []float64{0.19998360520892217, 0.010350644318663525, 0.01960493546891094, 0.03208906550305253, 0.04993267593895693, 0.07651399534454084, 0.11862407118600789, 0.1921448731780023, 0.3473205862372022, 0.36916437893066273}, F: 0.00029366053745674594, Global: true, }, } } // PowellBadlyScaled implements the Powell's badly scaled function. // The function is very flat near the minimum. A satisfactory solution is one // that gives f(x) ≅ 1e-13. // // Standard starting point: // [0, 1] // // References: // - Powell, M.J.D.: A Hybrid Method for Nonlinear Equations. Numerical // Methods for Nonlinear Algebraic Equations, P. Rabinowitz (ed.), Gordon // and Breach (1970) // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type PowellBadlyScaled struct{} func (PowellBadlyScaled) Func(x []float64) float64 { if len(x) != 2 { panic("dimension of the problem must be 2") } f1 := 1e4*x[0]*x[1] - 1 f2 := math.Exp(-x[0]) + math.Exp(-x[1]) - 1.0001 return f1*f1 + f2*f2 } func (PowellBadlyScaled) Grad(grad, x []float64) { if len(x) != 2 { panic("dimension of the problem must be 2") } if len(x) != len(grad) { panic("incorrect size of the gradient") } f1 := 1e4*x[0]*x[1] - 1 f2 := math.Exp(-x[0]) + math.Exp(-x[1]) - 1.0001 grad[0] = 2 * (1e4*f1*x[1] - f2*math.Exp(-x[0])) grad[1] = 2 * (1e4*f1*x[0] - f2*math.Exp(-x[1])) } func (PowellBadlyScaled) Hess(hess mat64.MutableSymmetric, x []float64) { if len(x) != 2 { panic("dimension of the problem must be 2") } if len(x) != hess.Symmetric() { panic("incorrect size of the Hessian") } t1 := 1e4*x[0]*x[1] - 1 s1 := math.Exp(-x[0]) s2 := math.Exp(-x[1]) t2 := s1 + s2 - 1.0001 h00 := 2 * (1e8*x[1]*x[1] + s1*(s1+t2)) h01 := 2 * (1e4*(1+2*t1) + s1*s2) h11 := 2 * (1e8*x[0]*x[0] + s2*(s2+t2)) hess.SetSym(0, 0, h00) hess.SetSym(0, 1, h01) hess.SetSym(1, 1, h11) } func (PowellBadlyScaled) Minima() []Minimum { return []Minimum{ { X: []float64{1.0981593296997149e-05, 9.106146739867375}, F: 0, Global: true, }, } } // Trigonometric implements the trigonometric function. // // Standard starting point: // [1/dim, ..., 1/dim] // // References: // - Spedicato E.: Computational experience with quasi-Newton algorithms for // minimization problems of moderatly large size. Towards Global // Optimization 2 (1978), 209-219 // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type Trigonometric struct{} func (Trigonometric) Func(x []float64) (sum float64) { var s1 float64 for _, v := range x { s1 += math.Cos(v) } for i, v := range x { f := float64(len(x)+i+1) - float64(i+1)*math.Cos(v) - math.Sin(v) - s1 sum += f * f } return sum } func (Trigonometric) Grad(grad, x []float64) { if len(x) != len(grad) { panic("incorrect size of the gradient") } var s1 float64 for _, v := range x { s1 += math.Cos(v) } var s2 float64 for i, v := range x { f := float64(len(x)+i+1) - float64(i+1)*math.Cos(v) - math.Sin(v) - s1 s2 += f grad[i] = 2 * f * (float64(i+1)*math.Sin(v) - math.Cos(v)) } for i, v := range x { grad[i] += 2 * s2 * math.Sin(v) } } func (Trigonometric) Minima() []Minimum { return []Minimum{ { X: []float64{0.04296456438227447, 0.043976287478192246, 0.045093397949095684, 0.04633891624617569, 0.047744381782831, 0.04935473251330618, 0.05123734850076505, 0.19520946391410446, 0.1649776652761741, 0.06014857783799575}, F: 0, Global: true, }, { // TODO(vladimir-ch): If we knew the location of this minimum more // accurately, we could decrease defaultGradTol. X: []float64{0.05515090434047145, 0.05684061730812344, 0.05876400231100774, 0.060990608903034337, 0.06362621381044778, 0.06684318087364617, 0.2081615177172172, 0.16436309604419047, 0.08500689695564931, 0.09143145386293675}, F: 2.795056121876575e-05, Global: false, }, } } // VariablyDimensioned implements a variably dimensioned function. // // Standard starting point: // [..., (dim-i)/dim, ...], i=1,...,dim // // References: // More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization // software. ACM Trans Math Softw 7 (1981), 17-41 type VariablyDimensioned struct{} func (VariablyDimensioned) Func(x []float64) (sum float64) { for _, v := range x { t := v - 1 sum += t * t } var s float64 for i, v := range x { s += float64(i+1) * (v - 1) } s *= s sum += s s *= s sum += s return sum } func (VariablyDimensioned) Grad(grad, x []float64) { if len(x) != len(grad) { panic("incorrect size of the gradient") } var s float64 for i, v := range x { s += float64(i+1) * (v - 1) } for i, v := range x { grad[i] = 2 * (v - 1 + s*float64(i+1)*(1+2*s*s)) } } func (VariablyDimensioned) Minima() []Minimum { return []Minimum{ { X: []float64{1, 1}, F: 0, Global: true, }, { X: []float64{1, 1, 1}, F: 0, Global: true, }, { X: []float64{1, 1, 1, 1}, F: 0, Global: true, }, { X: []float64{1, 1, 1, 1, 1}, F: 0, Global: true, }, { X: []float64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, F: 0, Global: true, }, } } // Watson implements the Watson's function. // Dimension of the problem should be 2 <= dim <= 31. For dim == 9, the problem // of minimizing the function is very ill conditioned. // // Standard starting point: // [0, ..., 0] // // References: // - Kowalik, J.S., Osborne, M.R.: Methods for Unconstrained Optimization // Problems. Elsevier North-Holland, New York, 1968 // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type Watson struct{} func (Watson) Func(x []float64) (sum float64) { for i := 1; i <= 29; i++ { d1 := float64(i) / 29 d2 := 1.0 var s1 float64 for j := 1; j < len(x); j++ { s1 += float64(j) * d2 * x[j] d2 *= d1 } d2 = 1.0 var s2 float64 for _, v := range x { s2 += d2 * v d2 *= d1 } t := s1 - s2*s2 - 1 sum += t * t } t := x[1] - x[0]*x[0] - 1 sum += x[0]*x[0] + t*t return sum } func (Watson) Grad(grad, x []float64) { if len(x) != len(grad) { panic("incorrect size of the gradient") } for i := range grad { grad[i] = 0 } for i := 1; i <= 29; i++ { d1 := float64(i) / 29 d2 := 1.0 var s1 float64 for j := 1; j < len(x); j++ { s1 += float64(j) * d2 * x[j] d2 *= d1 } d2 = 1.0 var s2 float64 for _, v := range x { s2 += d2 * v d2 *= d1 } t := s1 - s2*s2 - 1 s3 := 2 * d1 * s2 d2 = 2 / d1 for j := range x { grad[j] += d2 * (float64(j) - s3) * t d2 *= d1 } } t := x[1] - x[0]*x[0] - 1 grad[0] += x[0] * (2 - 4*t) grad[1] += 2 * t } func (Watson) Hess(hess mat64.MutableSymmetric, x []float64) { dim := len(x) if dim != hess.Symmetric() { panic("incorrect size of the Hessian") } for j := 0; j < dim; j++ { for k := j; k < dim; k++ { hess.SetSym(j, k, 0) } } for i := 1; i <= 29; i++ { d1 := float64(i) / 29 d2 := 1.0 var s1 float64 for j := 1; j < dim; j++ { s1 += float64(j) * d2 * x[j] d2 *= d1 } d2 = 1.0 var s2 float64 for _, v := range x { s2 += d2 * v d2 *= d1 } t := s1 - s2*s2 - 1 s3 := 2 * d1 * s2 d2 = 2 / d1 th := 2 * d1 * d1 * t for j := 0; j < dim; j++ { v := float64(j) - s3 d3 := 1 / d1 for k := 0; k <= j; k++ { hess.SetSym(k, j, hess.At(k, j)+d2*d3*(v*(float64(k)-s3)-th)) d3 *= d1 } d2 *= d1 } } t1 := x[1] - x[0]*x[0] - 1 hess.SetSym(0, 0, hess.At(0, 0)+8*x[0]*x[0]+2-4*t1) hess.SetSym(0, 1, hess.At(0, 1)-4*x[0]) hess.SetSym(1, 1, hess.At(1, 1)+2) } func (Watson) Minima() []Minimum { return []Minimum{ { X: []float64{-0.01572508644590686, 1.012434869244884, -0.23299162372002916, 1.2604300800978554, -1.51372891341701, 0.9929964286340117}, F: 0.0022876700535523838, Global: true, }, { X: []float64{-1.5307036521992127e-05, 0.9997897039319495, 0.01476396369355022, 0.14634232829939883, 1.0008211030046426, -2.617731140519101, 4.104403164479245, -3.1436122785568514, 1.0526264080103074}, F: 1.399760138096796e-06, Global: true, }, // TODO(vladimir-ch): More, Garbow, Hillstrom list just the value, but // not the location. Our minimizers find a minimum, but the value is // different. // { // // For dim == 12 // F: 4.72238e-10, // Global: true, // }, // TODO(vladimir-ch): netlib/uncon report a value of 2.48631d-20 for dim == 20. } } // Wood implements the Wood's function. // // Standard starting point: // [-3, -1, -3, -1] // // References: // - Colville, A.R.: A comparative study of nonlinear programming codes. // Report 320-2949, IBM New York Scientific Center (1968) // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained // optimization software. ACM Trans Math Softw 7 (1981), 17-41 type Wood struct{} func (Wood) Func(x []float64) (sum float64) { if len(x) != 4 { panic("dimension of the problem must be 4") } f1 := x[1] - x[0]*x[0] f2 := 1 - x[0] f3 := x[3] - x[2]*x[2] f4 := 1 - x[2] f5 := x[1] + x[3] - 2 f6 := x[1] - x[3] return 100*f1*f1 + f2*f2 + 90*f3*f3 + f4*f4 + 10*f5*f5 + 0.1*f6*f6 } func (Wood) Grad(grad, x []float64) { if len(x) != 4 { panic("dimension of the problem must be 4") } if len(x) != len(grad) { panic("incorrect size of the gradient") } f1 := x[1] - x[0]*x[0] f2 := 1 - x[0] f3 := x[3] - x[2]*x[2] f4 := 1 - x[2] f5 := x[1] + x[3] - 2 f6 := x[1] - x[3] grad[0] = -2 * (200*f1*x[0] + f2) grad[1] = 2 * (100*f1 + 10*f5 + 0.1*f6) grad[2] = -2 * (180*f3*x[2] + f4) grad[3] = 2 * (90*f3 + 10*f5 - 0.1*f6) } func (Wood) Hess(hess mat64.MutableSymmetric, x []float64) { if len(x) != 4 { panic("dimension of the problem must be 4") } if len(x) != hess.Symmetric() { panic("incorrect size of the Hessian") } hess.SetSym(0, 0, 400*(3*x[0]*x[0]-x[1])+2) hess.SetSym(0, 1, -400*x[0]) hess.SetSym(1, 1, 220.2) hess.SetSym(0, 2, 0) hess.SetSym(1, 2, 0) hess.SetSym(2, 2, 360*(3*x[2]*x[2]-x[3])+2) hess.SetSym(0, 3, 0) hess.SetSym(1, 3, 19.8) hess.SetSym(2, 3, -360*x[2]) hess.SetSym(3, 3, 200.2) } func (Wood) Minima() []Minimum { return []Minimum{ { X: []float64{1, 1, 1, 1}, F: 0, Global: true, }, } } // ConcaveRight implements an univariate function that is concave to the right // of the minimizer which is located at x=sqrt(2). // // References: // More, J.J., and Thuente, D.J.: Line Search Algorithms with Guaranteed Sufficient Decrease. // ACM Transactions on Mathematical Software 20(3) (1994), 286–307, eq. (5.1) type ConcaveRight struct{} func (ConcaveRight) Func(x []float64) float64 { if len(x) != 1 { panic("dimension of the problem must be 1") } return -x[0] / (x[0]*x[0] + 2) } func (ConcaveRight) Grad(grad, x []float64) { if len(x) != 1 { panic("dimension of the problem must be 1") } if len(x) != len(grad) { panic("incorrect size of the gradient") } xSqr := x[0] * x[0] grad[0] = (xSqr - 2) / (xSqr + 2) / (xSqr + 2) } // ConcaveLeft implements an univariate function that is concave to the left of // the minimizer which is located at x=399/250=1.596. // // References: // More, J.J., and Thuente, D.J.: Line Search Algorithms with Guaranteed Sufficient Decrease. // ACM Transactions on Mathematical Software 20(3) (1994), 286–307, eq. (5.2) type ConcaveLeft struct{} func (ConcaveLeft) Func(x []float64) float64 { if len(x) != 1 { panic("dimension of the problem must be 1") } return math.Pow(x[0]+0.004, 4) * (x[0] - 1.996) } func (ConcaveLeft) Grad(grad, x []float64) { if len(x) != 1 { panic("dimension of the problem must be 1") } if len(x) != len(grad) { panic("incorrect size of the gradient") } grad[0] = math.Pow(x[0]+0.004, 3) * (5*x[0] - 7.98) } // Plassmann implements an univariate oscillatory function where the value of L // controls the number of oscillations. The value of Beta controls the size of // the derivative at zero and the size of the interval where the strong Wolfe // conditions can hold. For small values of Beta this function represents a // difficult test problem for linesearchers also because the information based // on the derivative is unreliable due to the oscillations. // // References: // More, J.J., and Thuente, D.J.: Line Search Algorithms with Guaranteed Sufficient Decrease. // ACM Transactions on Mathematical Software 20(3) (1994), 286–307, eq. (5.3) type Plassmann struct { L float64 // Number of oscillations for |x-1| ≥ Beta. Beta float64 // Size of the derivative at zero, f'(0) = -Beta. } func (f Plassmann) Func(x []float64) float64 { if len(x) != 1 { panic("dimension of the problem must be 1") } a := x[0] b := f.Beta l := f.L r := 2 * (1 - b) / l / math.Pi * math.Sin(l*math.Pi/2*a) switch { case a <= 1-b: r += 1 - a case 1-b < a && a <= 1+b: r += 0.5 * ((a-1)*(a-1)/b + b) default: // a > 1+b r += a - 1 } return r } func (f Plassmann) Grad(grad, x []float64) { if len(x) != 1 { panic("dimension of the problem must be 1") } if len(x) != len(grad) { panic("incorrect size of the gradient") } a := x[0] b := f.Beta l := f.L grad[0] = (1 - b) * math.Cos(l*math.Pi/2*a) switch { case a <= 1-b: grad[0] -= 1 case 1-b < a && a <= 1+b: grad[0] += (a - 1) / b default: // a > 1+b grad[0] += 1 } } // YanaiOzawaKaneko is an univariate convex function where the values of Beta1 // and Beta2 control the curvature around the minimum. Far away from the // minimum the function approximates an absolute value function. Near the // minimum, the function can either be sharply curved or flat, controlled by // the parameter values. // // References: // - More, J.J., and Thuente, D.J.: Line Search Algorithms with Guaranteed Sufficient Decrease. // ACM Transactions on Mathematical Software 20(3) (1994), 286–307, eq. (5.4) // - Yanai, H., Ozawa, M., and Kaneko, S.: Interpolation methods in one dimensional // optimization. Computing 27 (1981), 155–163 type YanaiOzawaKaneko struct { Beta1 float64 Beta2 float64 } func (f YanaiOzawaKaneko) Func(x []float64) float64 { if len(x) != 1 { panic("dimension of the problem must be 1") } a := x[0] b1 := f.Beta1 b2 := f.Beta2 g1 := math.Sqrt(1+b1*b1) - b1 g2 := math.Sqrt(1+b2*b2) - b2 return g1*math.Sqrt((a-1)*(a-1)+b2*b2) + g2*math.Sqrt(a*a+b1*b1) } func (f YanaiOzawaKaneko) Grad(grad, x []float64) { if len(x) != 1 { panic("dimension of the problem must be 1") } if len(x) != len(grad) { panic("incorrect size of the gradient") } a := x[0] b1 := f.Beta1 b2 := f.Beta2 g1 := math.Sqrt(1+b1*b1) - b1 g2 := math.Sqrt(1+b2*b2) - b2 grad[0] = g1*(a-1)/math.Sqrt(b2*b2+(a-1)*(a-1)) + g2*a/math.Sqrt(b1*b1+a*a) }