// Copyright ©2019 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package r3 import ( "math" "gonum.org/v1/gonum/mat" "gonum.org/v1/gonum/num/quat" ) // Vec is a 3D vector. type Vec struct { X, Y, Z float64 } // Add returns the vector sum of p and q. func Add(p, q Vec) Vec { return Vec{ X: p.X + q.X, Y: p.Y + q.Y, Z: p.Z + q.Z, } } // Sub returns the vector sum of p and -q. func Sub(p, q Vec) Vec { return Vec{ X: p.X - q.X, Y: p.Y - q.Y, Z: p.Z - q.Z, } } // Scale returns the vector p scaled by f. func Scale(f float64, p Vec) Vec { return Vec{ X: f * p.X, Y: f * p.Y, Z: f * p.Z, } } // Dot returns the dot product p·q. func Dot(p, q Vec) float64 { return p.X*q.X + p.Y*q.Y + p.Z*q.Z } // Cross returns the cross product p×q. func Cross(p, q Vec) Vec { return Vec{ p.Y*q.Z - p.Z*q.Y, p.Z*q.X - p.X*q.Z, p.X*q.Y - p.Y*q.X, } } // Rotate returns a new vector, rotated by alpha around the provided axis. func Rotate(p Vec, alpha float64, axis Vec) Vec { return NewRotation(alpha, axis).Rotate(p) } // Norm returns the Euclidean norm of p // |p| = sqrt(p_x^2 + p_y^2 + p_z^2). func Norm(p Vec) float64 { return math.Hypot(p.X, math.Hypot(p.Y, p.Z)) } // Norm2 returns the Euclidean squared norm of p // |p|^2 = p_x^2 + p_y^2 + p_z^2. func Norm2(p Vec) float64 { return p.X*p.X + p.Y*p.Y + p.Z*p.Z } // Unit returns the unit vector colinear to p. // Unit returns {NaN,NaN,NaN} for the zero vector. func Unit(p Vec) Vec { if p.X == 0 && p.Y == 0 && p.Z == 0 { return Vec{X: math.NaN(), Y: math.NaN(), Z: math.NaN()} } return Scale(1/Norm(p), p) } // Cos returns the cosine of the opening angle between p and q. func Cos(p, q Vec) float64 { return Dot(p, q) / (Norm(p) * Norm(q)) } // Box is a 3D bounding box. type Box struct { Min, Max Vec } // TODO: possibly useful additions to the current rotation API: // - create rotations from Euler angles (NewRotationFromEuler?) // - create rotations from rotation matrices (NewRotationFromMatrix?) // - return the equivalent Euler angles from a Rotation // // Euler angles have issues (see [1] for a discussion). // We should think carefully before adding them in. // [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ // Rotation describes a rotation in space. type Rotation quat.Number // NewRotation creates a rotation by alpha, around axis. func NewRotation(alpha float64, axis Vec) Rotation { if alpha == 0 { return Rotation{Real: 1} } q := raise(axis) sin, cos := math.Sincos(0.5 * alpha) q = quat.Scale(sin/quat.Abs(q), q) q.Real += cos if len := quat.Abs(q); len != 1 { q = quat.Scale(1/len, q) } return Rotation(q) } // Rotate returns p rotated according to the parameters used to construct // the receiver. func (r Rotation) Rotate(p Vec) Vec { if r.isIdentity() { return p } qq := quat.Number(r) pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq)) return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag} } func (r Rotation) isIdentity() bool { return r == Rotation{Real: 1} } func raise(p Vec) quat.Number { return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z} } // Matrix returns a 3×3 rotation matrix corresponding to the receiver. It // may be used to perform rotations on a 3-vector or to apply the rotation // to a 3×n matrix of column vectors. If the receiver is not a unit // quaternion, the returned matrix will not be a pure rotation. func (r Rotation) Matrix() mat.Matrix { re, im, jm, km := r.Real, r.Imag, r.Jmag, r.Kmag im2 := im * im jm2 := jm * jm km2 := km * km rim := re * im rjm := re * jm rkm := re * km ijm := im * jm jkm := jm * km kim := km * im return mat.NewDense(3, 3, []float64{ 1 - 2*(jm2+km2), 2 * (ijm - rkm), 2 * (kim + rjm), 2 * (ijm + rkm), 1 - 2*(im2+km2), 2 * (jkm - rim), 2 * (kim - rjm), 2 * (jkm + rim), 1 - 2*(im2+jm2), }) }