// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package distuv import ( "math" "golang.org/x/exp/rand" "gonum.org/v1/gonum/mathext" ) // Gamma implements the Gamma distribution, a two-parameter continuous distribution // with support over the positive real numbers. // // The gamma distribution has density function // // β^α / Γ(α) x^(α-1)e^(-βx) // // For more information, see https://en.wikipedia.org/wiki/Gamma_distribution type Gamma struct { // Alpha is the shape parameter of the distribution. Alpha must be greater // than 0. If Alpha == 1, this is equivalent to an exponential distribution. Alpha float64 // Beta is the rate parameter of the distribution. Beta must be greater than 0. // If Beta == 2, this is equivalent to a Chi-Squared distribution. Beta float64 Src rand.Source } // CDF computes the value of the cumulative distribution function at x. func (g Gamma) CDF(x float64) float64 { if x < 0 { return 0 } return mathext.GammaIncReg(g.Alpha, g.Beta*x) } // ExKurtosis returns the excess kurtosis of the distribution. func (g Gamma) ExKurtosis() float64 { return 6 / g.Alpha } // LogProb computes the natural logarithm of the value of the probability // density function at x. func (g Gamma) LogProb(x float64) float64 { if x < 0 { return math.Inf(-1) } a := g.Alpha b := g.Beta lg, _ := math.Lgamma(a) if a == 1 { return math.Log(b) - lg - b*x } return a*math.Log(b) - lg + (a-1)*math.Log(x) - b*x } // Mean returns the mean of the probability distribution. func (g Gamma) Mean() float64 { return g.Alpha / g.Beta } // Mode returns the mode of the gamma distribution. // // The mode is 0 in the special case where the Alpha (shape) parameter // is less than 1. func (g Gamma) Mode() float64 { if g.Alpha < 1 { return 0 } return (g.Alpha - 1) / g.Beta } // NumParameters returns the number of parameters in the distribution. func (Gamma) NumParameters() int { return 2 } // Prob computes the value of the probability density function at x. func (g Gamma) Prob(x float64) float64 { return math.Exp(g.LogProb(x)) } // Quantile returns the inverse of the cumulative distribution function. func (g Gamma) Quantile(p float64) float64 { if p < 0 || p > 1 { panic(badPercentile) } return mathext.GammaIncRegInv(g.Alpha, p) / g.Beta } // Rand returns a random sample drawn from the distribution. // // Rand panics if either alpha or beta is <= 0. func (g Gamma) Rand() float64 { const ( // The 0.2 threshold is from https://www4.stat.ncsu.edu/~rmartin/Codes/rgamss.R // described in detail in https://arxiv.org/abs/1302.1884. smallAlphaThresh = 0.2 ) if g.Beta <= 0 { panic("gamma: beta <= 0") } unifrnd := rand.Float64 exprnd := rand.ExpFloat64 normrnd := rand.NormFloat64 if g.Src != nil { rnd := rand.New(g.Src) unifrnd = rnd.Float64 exprnd = rnd.ExpFloat64 normrnd = rnd.NormFloat64 } a := g.Alpha b := g.Beta switch { case a <= 0: panic("gamma: alpha <= 0") case a == 1: // Generate from exponential return exprnd() / b case a < smallAlphaThresh: // Generate using // Liu, Chuanhai, Martin, Ryan and Syring, Nick. "Simulating from a // gamma distribution with small shape parameter" // https://arxiv.org/abs/1302.1884 // use this reference: http://link.springer.com/article/10.1007/s00180-016-0692-0 // Algorithm adjusted to work in log space as much as possible. lambda := 1/a - 1 lr := -math.Log1p(1 / lambda / math.E) for { e := exprnd() var z float64 if e >= -lr { z = e + lr } else { z = -exprnd() / lambda } eza := math.Exp(-z / a) lh := -z - eza var lEta float64 if z >= 0 { lEta = -z } else { lEta = -1 + lambda*z } if lh-lEta > -exprnd() { return eza / b } } case a >= smallAlphaThresh: // Generate using: // Marsaglia, George, and Wai Wan Tsang. "A simple method for generating // gamma variables." ACM Transactions on Mathematical Software (TOMS) // 26.3 (2000): 363-372. d := a - 1.0/3 m := 1.0 if a < 1 { d += 1.0 m = math.Pow(unifrnd(), 1/a) } c := 1 / (3 * math.Sqrt(d)) for { x := normrnd() v := 1 + x*c if v <= 0.0 { continue } v = v * v * v u := unifrnd() if u < 1.0-0.0331*(x*x)*(x*x) { return m * d * v / b } if math.Log(u) < 0.5*x*x+d*(1-v+math.Log(v)) { return m * d * v / b } } } panic("unreachable") } // Survival returns the survival function (complementary CDF) at x. func (g Gamma) Survival(x float64) float64 { if x < 0 { return 1 } return mathext.GammaIncRegComp(g.Alpha, g.Beta*x) } // StdDev returns the standard deviation of the probability distribution. func (g Gamma) StdDev() float64 { return math.Sqrt(g.Alpha) / g.Beta } // Variance returns the variance of the probability distribution. func (g Gamma) Variance() float64 { return g.Alpha / g.Beta / g.Beta }