// Copyright ©2015 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testlapack import ( "fmt" "math" "sort" "testing" "golang.org/x/exp/rand" "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/floats" "gonum.org/v1/gonum/lapack" ) type Dlasq2er interface { Dlasq2(n int, z []float64) (info int) Dsyev(jobz lapack.EVJob, uplo blas.Uplo, n int, a []float64, lda int, w, work []float64, lwork int) (ok bool) } func Dlasq2Test(t *testing.T, impl Dlasq2er) { const tol = 1e-14 rnd := rand.New(rand.NewSource(1)) for _, n := range []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 25, 50} { for k := 0; k < 10; k++ { for typ := 0; typ <= 2; typ++ { name := fmt.Sprintf("n=%v,typ=%v", n, typ) want := make([]float64, n) z := make([]float64, 4*n) switch typ { case 0: // L is the identity, U has zero diagonal. case 1: // L is the identity, U has random diagonal, and so T is upper triangular. for i := 0; i < n; i++ { z[2*i] = rnd.Float64() want[i] = z[2*i] } sort.Float64s(want) case 2: // Random tridiagonal matrix for i := range z { z[i] = rnd.Float64() } // The slice 'want' is computed below. } zCopy := make([]float64, len(z)) copy(zCopy, z) // Compute the eigenvalues of the symmetric positive definite // tridiagonal matrix associated with the slice z. info := impl.Dlasq2(n, z) if info != 0 { t.Fatalf("%v: Dlasq2 failed", name) } if n == 0 { continue } got := z[:n] if typ == 2 { // Compute the expected result. // Compute the non-symmetric tridiagonal matrix T = L*U where L and // U are represented by the slice z. ldt := n T := make([]float64, n*ldt) for i := 0; i < n; i++ { if i == 0 { T[0] = zCopy[0] } else { T[i*ldt+i] = zCopy[2*i-1] + zCopy[2*i] } if i < n-1 { T[i*ldt+i+1] = 1 T[(i+1)*ldt+i] = zCopy[2*i+1] * zCopy[2*i] } } // Compute the symmetric tridiagonal matrix by applying a similarity // transformation on T: D^{-1}*T*D. See discussion and references in // http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=5&t=4839 d := make([]float64, n) d[0] = 1 for i := 1; i < n; i++ { d[i] = d[i-1] * T[i*ldt+i-1] / T[(i-1)*ldt+i] } for i, di := range d { d[i] = math.Sqrt(di) } for i := 0; i < n; i++ { // Update only the upper triangle. for j := i; j <= min(i+1, n-1); j++ { T[i*ldt+j] *= d[j] / d[i] } } // Compute the eigenvalues of D^{-1}*T*D by using Dsyev. It's call // tree doesn't include Dlasq2. work := make([]float64, 3*n) ok := impl.Dsyev(lapack.EVNone, blas.Upper, n, T, ldt, want, work, len(work)) if !ok { t.Fatalf("%v: Dsyev failed", name) } } sort.Float64s(got) diff := floats.Distance(got, want, math.Inf(1)) if diff > tol { t.Errorf("%v: unexpected eigenvalues; diff=%v\n%v\n%v\n\n", name, diff, got, want) } } } } }