// Copyright ©2018 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testblas import ( "fmt" "math" "testing" "golang.org/x/exp/rand" "gonum.org/v1/gonum/blas" ) type Zhbmver interface { Zhbmv(uplo blas.Uplo, n, k int, alpha complex128, ab []complex128, ldab int, x []complex128, incX int, beta complex128, y []complex128, incY int) Zhemver } func ZhbmvTest(t *testing.T, impl Zhbmver) { rnd := rand.New(rand.NewSource(1)) for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} { for _, n := range []int{0, 1, 2, 3, 5} { for k := 0; k < n; k++ { for _, ldab := range []int{k + 1, k + 1 + 10} { // Generate all possible combinations of given increments. // Use slices to reduce indentation. for _, inc := range allPairs([]int{-11, 1, 7}, []int{-3, 1, 5}) { incX := inc[0] incY := inc[1] for _, ab := range []struct { alpha complex128 beta complex128 }{ // All potentially relevant values of // alpha and beta. {0, 0}, {0, 1}, {0, complex(rnd.NormFloat64(), rnd.NormFloat64())}, {complex(rnd.NormFloat64(), rnd.NormFloat64()), 0}, {complex(rnd.NormFloat64(), rnd.NormFloat64()), 1}, {complex(rnd.NormFloat64(), rnd.NormFloat64()), complex(rnd.NormFloat64(), rnd.NormFloat64())}, } { testZhbmv(t, impl, rnd, uplo, n, k, ab.alpha, ab.beta, ldab, incX, incY) } } } } } } } // testZhbmv tests Zhbmv by comparing its output to that of Zhemv. func testZhbmv(t *testing.T, impl Zhbmver, rnd *rand.Rand, uplo blas.Uplo, n, k int, alpha, beta complex128, ldab, incX, incY int) { const tol = 1e-13 // Allocate a dense-storage Hermitian band matrix filled with NaNs that will be // used as the reference matrix for Zhemv. lda := max(1, n) a := makeZGeneral(nil, n, n, lda) // Fill the matrix with zeros. for i := 0; i < n; i++ { for j := 0; j < n; j++ { a[i*lda+j] = 0 } } // Fill the triangle band with random data, invalidating the imaginary // part of diagonal elements because it should not be referenced by // Zhbmv and Zhemv. if uplo == blas.Upper { for i := 0; i < n; i++ { a[i*lda+i] = complex(rnd.NormFloat64(), math.NaN()) for j := i + 1; j < min(n, i+k+1); j++ { re := rnd.NormFloat64() im := rnd.NormFloat64() a[i*lda+j] = complex(re, im) } } } else { for i := 0; i < n; i++ { for j := max(0, i-k); j < i; j++ { re := rnd.NormFloat64() im := rnd.NormFloat64() a[i*lda+j] = complex(re, im) } a[i*lda+i] = complex(rnd.NormFloat64(), math.NaN()) } } // Create the actual Hermitian band matrix. ab := zPackTriBand(k, ldab, uplo, n, a, lda) abCopy := make([]complex128, len(ab)) copy(abCopy, ab) // Generate a random complex vector x. xtest := make([]complex128, n) for i := range xtest { re := rnd.NormFloat64() im := rnd.NormFloat64() xtest[i] = complex(re, im) } x := makeZVector(xtest, incX) xCopy := make([]complex128, len(x)) copy(xCopy, x) // Generate a random complex vector y. ytest := make([]complex128, n) for i := range ytest { re := rnd.NormFloat64() im := rnd.NormFloat64() ytest[i] = complex(re, im) } y := makeZVector(ytest, incY) want := make([]complex128, len(y)) copy(want, y) // Compute the reference result of alpha*op(A)*x + beta*y, storing it // into want. impl.Zhemv(uplo, n, alpha, a, lda, x, incX, beta, want, incY) // Compute alpha*op(A)*x + beta*y, storing the result in-place into y. impl.Zhbmv(uplo, n, k, alpha, ab, ldab, x, incX, beta, y, incY) prefix := fmt.Sprintf("uplo=%v,n=%v,k=%v,incX=%v,incY=%v,ldab=%v", uplo, n, k, incX, incY, ldab) if !zsame(x, xCopy) { t.Errorf("%v: unexpected modification of x", prefix) } if !zsame(ab, abCopy) { t.Errorf("%v: unexpected modification of ab", prefix) } if !zSameAtNonstrided(y, want, incY) { t.Errorf("%v: unexpected modification of y", prefix) } if !zEqualApproxAtStrided(y, want, incY, tol) { t.Errorf("%v: unexpected result\nwant %v\ngot %v", prefix, want, y) } }