// Copyright ©2022 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package r3_test import ( "fmt" "math" "gonum.org/v1/gonum/num/quat" "gonum.org/v1/gonum/spatial/r3" ) // slerp returns the spherical interpolation between q0 and q1 // for t in [0,1]; 0 corresponds to q0 and 1 corresponds to q1. func slerp(r0, r1 r3.Rotation, t float64) r3.Rotation { q0 := quat.Number(r0) q1 := quat.Number(r1) // Based on Simo Särkkä "Notes on Quaternions" Eq. 35 // p(t) = (q1 ∗ q0^−1) ^ t ∗ q0 // https://users.aalto.fi/~ssarkka/pub/quat.pdf q1 = quat.Mul(q1, quat.Inv(q0)) q1 = quat.PowReal(q1, t) return r3.Rotation(quat.Mul(q1, q0)) } // Spherically interpolate between two quaternions to obtain a rotation. func Example_slerp() { const steps = 10 // An initial rotation of pi/4 around the x-axis (45 degrees). initialRot := r3.NewRotation(math.Pi/4, r3.Vec{X: 1}) // Final rotation is pi around the x-axis (180 degrees). finalRot := r3.NewRotation(math.Pi, r3.Vec{X: 1}) // The vector we are rotating is (1, 1, 1). // The result should then be (1, -1, -1) when t=1 (finalRot) since we invert the y and z axes. v := r3.Vec{X: 1, Y: 1, Z: 1} for i := 0.0; i <= steps; i++ { t := i / steps rotated := slerp(initialRot, finalRot, t).Rotate(v) fmt.Printf("%.2f %+.2f\n", t, rotated) } // Output: // // 0.00 {+1.00 -0.00 +1.41} // 0.10 {+1.00 -0.33 +1.38} // 0.20 {+1.00 -0.64 +1.26} // 0.30 {+1.00 -0.92 +1.08} // 0.40 {+1.00 -1.14 +0.83} // 0.50 {+1.00 -1.31 +0.54} // 0.60 {+1.00 -1.40 +0.22} // 0.70 {+1.00 -1.41 -0.11} // 0.80 {+1.00 -1.34 -0.44} // 0.90 {+1.00 -1.21 -0.74} // 1.00 {+1.00 -1.00 -1.00} }