// Copyright ©2021 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package r3 import ( "math" "gonum.org/v1/gonum/num/quat" ) // TODO: possibly useful additions to the current rotation API: // - create rotations from Euler angles (NewRotationFromEuler?) // - create rotations from rotation matrices (NewRotationFromMatrix?) // - return the equivalent Euler angles from a Rotation // // Euler angles have issues (see [1] for a discussion). // We should think carefully before adding them in. // [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ // Rotation describes a rotation in space. type Rotation quat.Number // NewRotation creates a rotation by alpha, around axis. func NewRotation(alpha float64, axis Vec) Rotation { if alpha == 0 { return Rotation{Real: 1} } q := raise(axis) sin, cos := math.Sincos(0.5 * alpha) q = quat.Scale(sin/quat.Abs(q), q) q.Real += cos if len := quat.Abs(q); len != 1 { q = quat.Scale(1/len, q) } return Rotation(q) } // Rotate returns p rotated according to the parameters used to construct // the receiver. func (r Rotation) Rotate(p Vec) Vec { if r.isIdentity() { return p } qq := quat.Number(r) pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq)) return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag} } func (r Rotation) isIdentity() bool { return r == Rotation{Real: 1} } func raise(p Vec) quat.Number { return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z} }