// Copyright ©2021 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build safe // +build safe // TODO(kortschak): Get rid of this rigmarole if https://golang.org/issue/50118 // is accepted. package r3 import ( "gonum.org/v1/gonum/blas/blas64" "gonum.org/v1/gonum/mat" ) type array [9]float64 // At returns the value of a matrix element at row i, column j. // At expects indices in the range [0,2]. // It will panic if i or j are out of bounds for the matrix. func (m *Mat) At(i, j int) float64 { if uint(i) > 2 { panic(mat.ErrRowAccess) } if uint(j) > 2 { panic(mat.ErrColAccess) } if m.data == nil { m.data = new(array) } return m.data[i*3+j] } // Set sets the element at row i, column j to the value v. func (m *Mat) Set(i, j int, v float64) { if uint(i) > 2 { panic(mat.ErrRowAccess) } if uint(j) > 2 { panic(mat.ErrColAccess) } if m.data == nil { m.data = new(array) } m.data[i*3+j] = v } // Eye returns the 3×3 Identity matrix func Eye() *Mat { return &Mat{&array{ 1, 0, 0, 0, 1, 0, 0, 0, 1, }} } // Skew returns the 3×3 skew symmetric matrix (right hand system) of v. // // ⎡ 0 -z y⎤ // Skew({x,y,z}) = ⎢ z 0 -x⎥ // ⎣-y x 0⎦ // // Deprecated: use Mat.Skew() func Skew(v Vec) (M *Mat) { return &Mat{&array{ 0, -v.Z, v.Y, v.Z, 0, -v.X, -v.Y, v.X, 0, }} } // Mul takes the matrix product of a and b, placing the result in the receiver. // If the number of columns in a does not equal 3, Mul will panic. func (m *Mat) Mul(a, b mat.Matrix) { ra, ca := a.Dims() rb, cb := b.Dims() switch { case ra != 3: panic(mat.ErrShape) case cb != 3: panic(mat.ErrShape) case ca != rb: panic(mat.ErrShape) } if m.data == nil { m.data = new(array) } if ca != 3 { // General matrix multiplication for the case where the inner dimension is not 3. var t mat.Dense t.Mul(a, b) copy(m.data[:], t.RawMatrix().Data) return } a00 := a.At(0, 0) b00 := b.At(0, 0) a01 := a.At(0, 1) b01 := b.At(0, 1) a02 := a.At(0, 2) b02 := b.At(0, 2) a10 := a.At(1, 0) b10 := b.At(1, 0) a11 := a.At(1, 1) b11 := b.At(1, 1) a12 := a.At(1, 2) b12 := b.At(1, 2) a20 := a.At(2, 0) b20 := b.At(2, 0) a21 := a.At(2, 1) b21 := b.At(2, 1) a22 := a.At(2, 2) b22 := b.At(2, 2) *(m.data) = array{ a00*b00 + a01*b10 + a02*b20, a00*b01 + a01*b11 + a02*b21, a00*b02 + a01*b12 + a02*b22, a10*b00 + a11*b10 + a12*b20, a10*b01 + a11*b11 + a12*b21, a10*b02 + a11*b12 + a12*b22, a20*b00 + a21*b10 + a22*b20, a20*b01 + a21*b11 + a22*b21, a20*b02 + a21*b12 + a22*b22, } } // RawMatrix returns the blas representation of the matrix with the backing // data of this matrix. Changes to the returned matrix will be reflected in // the receiver. func (m *Mat) RawMatrix() blas64.General { if m.data == nil { m.data = new(array) } return blas64.General{Rows: 3, Cols: 3, Data: m.data[:], Stride: 3} } func arrayFrom(vals []float64) *array { return (*array)(vals) } // Mat returns a 3×3 rotation matrix corresponding to the receiver. It // may be used to perform rotations on a 3-vector or to apply the rotation // to a 3×n matrix of column vectors. If the receiver is not a unit // quaternion, the returned matrix will not be a pure rotation. func (r Rotation) Mat() *Mat { w, i, j, k := r.Real, r.Imag, r.Jmag, r.Kmag ii := 2 * i * i jj := 2 * j * j kk := 2 * k * k wi := 2 * w * i wj := 2 * w * j wk := 2 * w * k ij := 2 * i * j jk := 2 * j * k ki := 2 * k * i return &Mat{&array{ 1 - (jj + kk), ij - wk, ki + wj, ij + wk, 1 - (ii + kk), jk - wi, ki - wj, jk + wi, 1 - (ii + jj), }} }