// Copyright ©2022 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package r3 import "math" // Box is a 3D bounding box. Well formed Boxes Min components // are smaller than Max components. type Box struct { Min, Max Vec } // NewBox is shorthand for Box{Min:Vec{x0,y0,z0}, Max:Vec{x1,y1,z1}}. // The sides are swapped so that the resulting Box is well formed. func NewBox(x0, y0, z0, x1, y1, z1 float64) Box { return Box{ Min: Vec{X: math.Min(x0, x1), Y: math.Min(y0, y1), Z: math.Min(z0, z1)}, Max: Vec{X: math.Max(x0, x1), Y: math.Max(y0, y1), Z: math.Max(z0, z1)}, } } // Empty returns true if a Box's volume is zero // or if a Min component is greater than its Max component. func (a Box) Empty() bool { return a.Min.X >= a.Max.X || a.Min.Y >= a.Max.Y || a.Min.Z >= a.Max.Z } // Size returns the size of the Box. func (a Box) Size() Vec { return Sub(a.Max, a.Min) } // Center returns the center of the Box. func (a Box) Center() Vec { return Scale(0.5, Add(a.Min, a.Max)) } // Vertices returns a slice of the 8 vertices // corresponding to each of the Box's corners. // // Ordering of vertices 0-3 is CCW in the XY plane starting at box minimum. // Ordering of vertices 4-7 is CCW in the XY plane starting at box minimum // for X and Y values and maximum Z value. // // Edges for the box can be constructed with the following indices: // // edges := [12][2]int{ // {0, 1}, {1, 2}, {2, 3}, {3, 0}, // {4, 5}, {5, 6}, {6, 7}, {7, 4}, // {0, 4}, {1, 5}, {2, 6}, {3, 7}, // } func (a Box) Vertices() []Vec { return []Vec{ 0: a.Min, 1: {X: a.Max.X, Y: a.Min.Y, Z: a.Min.Z}, 2: {X: a.Max.X, Y: a.Max.Y, Z: a.Min.Z}, 3: {X: a.Min.X, Y: a.Max.Y, Z: a.Min.Z}, 4: {X: a.Min.X, Y: a.Min.Y, Z: a.Max.Z}, 5: {X: a.Max.X, Y: a.Min.Y, Z: a.Max.Z}, 6: a.Max, 7: {X: a.Min.X, Y: a.Max.Y, Z: a.Max.Z}, } } // Union returns a box enclosing both the receiver and argument Boxes. func (a Box) Union(b Box) Box { if a.Empty() { return b } if b.Empty() { return a } return Box{ Min: minElem(a.Min, b.Min), Max: maxElem(a.Max, b.Max), } } // Add adds v to the bounding box components. // It is the equivalent of translating the Box by v. func (a Box) Add(v Vec) Box { return Box{Add(a.Min, v), Add(a.Max, v)} } // Scale returns a new Box scaled by a size vector around its center. // The scaling is done element wise which is to say the Box's X dimension // is scaled by scale.X. Negative elements of scale are interpreted as zero. func (a Box) Scale(scale Vec) Box { scale = maxElem(scale, Vec{}) // TODO(soypat): Probably a better way to do this. return centeredBox(a.Center(), mulElem(scale, a.Size())) } // centeredBox creates a Box with a given center and size. // Negative components of size will be interpreted as zero. func centeredBox(center, size Vec) Box { size = maxElem(size, Vec{}) // set negative values to zero. half := Scale(0.5, size) return Box{Min: Sub(center, half), Max: Add(center, half)} } // Contains returns true if v is contained within the bounds of the Box. func (a Box) Contains(v Vec) bool { if a.Empty() { return v == a.Min && v == a.Max } return a.Min.X <= v.X && v.X <= a.Max.X && a.Min.Y <= v.Y && v.Y <= a.Max.Y && a.Min.Z <= v.Z && v.Z <= a.Max.Z } // Canon returns the canonical version of a. The returned Box has minimum // and maximum coordinates swapped if necessary so that it is well-formed. func (a Box) Canon() Box { return Box{ Min: minElem(a.Min, a.Max), Max: maxElem(a.Min, a.Max), } }