native: restructure dsterqr.go part 1

Remove gotos.
This commit is contained in:
kortschak
2016-03-12 09:49:34 +10:30
parent a58b813a93
commit fc65060520

View File

@@ -88,7 +88,6 @@ func (impl Implementation) Dsteqr(compz lapack.EigComp, n int, d, e, z []float64
// Determine where the matrix splits and choose QL or QR iteration for each
// block, according to whether top or bottom diagonal element is smaller.
// TODO(btracey): Reformat the gotos to use structural flow techniques.
// TODO(btracey): Move these variables closer to actual usage when
// gotos are removed.
l1 := 0
@@ -104,256 +103,268 @@ func (impl Implementation) Dsteqr(compz lapack.EigComp, n int, d, e, z []float64
)
var iscale scaletype
Ten:
if l1 > n-1 {
goto OneSixty
}
if l1 > 0 {
e[l1-1] = 0
}
if l1 <= nm1 {
for m = l1; m < nm1; m++ {
test := math.Abs(e[m])
if test == 0 {
goto Thirty
}
if test <= (math.Sqrt(math.Abs(d[m]))*math.Sqrt(math.Abs(d[m+1])))*eps {
e[m] = 0
goto Thirty
for {
if l1 > n-1 {
// Order eigenvalues and eigenvectors.
if icompz == 0 {
impl.Dlasrt(lapack.SortIncreasing, n, d)
} else {
// TODO(btracey): Consider replacing this sort with a call to sort.Sort.
for ii := 1; ii < n; ii++ {
i := ii - 1
k := i
p := d[i]
for j := ii; j < n; j++ {
if d[j] < p {
k = j
p = d[j]
}
}
if k != i {
d[k] = d[i]
d[i] = p
bi.Dswap(n, z[i:], ldz, z[k:], ldz)
}
}
}
return true
}
}
m = n - 1
Thirty:
l = l1
lsv = l
lend = m
lendsv = lend
l1 = m + 1
if lend == l {
goto Ten
}
// Scale submatrix in rows and columns L to Lend
anorm = impl.Dlanst(lapack.MaxAbs, lend-l+1, d[l:], e[l:])
switch {
case anorm == 0:
goto Ten
case anorm > ssfmax:
iscale = down
// TODO(btracey): Why is lda n?
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l+1, 1, d[l:], n)
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l, 1, e[l:], n)
case anorm < ssfmin:
iscale = up
// TODO(btracey): Why is lda n?
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l+1, 1, d[l:], n)
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l, 1, e[l:], n)
}
// Choose between QL and QR.
if math.Abs(d[lend]) < math.Abs(d[l]) {
lend = lsv
l = lendsv
}
if lend > l {
// QL Iteration. Look for small subdiagonal element.
Fourty:
if l != lend {
lendm1 := lend - 1
for m = l; m <= lendm1; m++ {
v := math.Abs(e[m])
if v*v <= (eps2*math.Abs(d[m]))*math.Abs(d[m+1])+safmin {
goto Sixty
if l1 > 0 {
e[l1-1] = 0
}
if l1 <= nm1 {
for m = l1; m < nm1; m++ {
test := math.Abs(e[m])
if test == 0 {
break
}
if test <= (math.Sqrt(math.Abs(d[m]))*math.Sqrt(math.Abs(d[m+1])))*eps {
e[m] = 0
break
}
}
}
m = lend
Sixty:
if m < lend {
e[m] = 0
}
p = d[l]
if m == l {
goto Eighty
l = l1
lsv = l
lend = m
lendsv = lend
l1 = m + 1
if lend == l {
continue
}
// If remaining matrix is 2×2, use Dlae2 to compute its eigensystem.
if m == l+1 {
if icompz > 0 {
d[l], d[l+1], work[l], work[n-1+l] = impl.Dlaev2(d[l], e[l], d[l+1])
impl.Dlasr(blas.Right, lapack.Variable, lapack.Backward,
n, 2, work[l:], work[n-1+l:], z[l:], ldz)
} else {
d[l], d[l+1] = impl.Dlae2(d[l], e[l], d[l+1])
}
e[l] = 0
l += 2
if l <= lend {
goto Fourty
}
goto OneFourty
// Scale submatrix in rows and columns L to Lend
anorm = impl.Dlanst(lapack.MaxAbs, lend-l+1, d[l:], e[l:])
switch {
case anorm == 0:
continue
case anorm > ssfmax:
iscale = down
// TODO(btracey): Why is lda n?
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l+1, 1, d[l:], n)
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l, 1, e[l:], n)
case anorm < ssfmin:
iscale = up
// TODO(btracey): Why is lda n?
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l+1, 1, d[l:], n)
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l, 1, e[l:], n)
}
if jtot == nmaxit {
goto OneFourty
// Choose between QL and QR.
if math.Abs(d[lend]) < math.Abs(d[l]) {
lend = lsv
l = lendsv
}
jtot++
// Form shift
g = (d[l+1] - p) / (2 * e[l])
r = impl.Dlapy2(g, 1)
g = d[m] - p + e[l]/(g+math.Copysign(r, g))
s = 1
c = 1
p = 0
// Inner loop
for i := m - 1; i >= l; i-- {
f := s * e[i]
b := c * e[i]
c, s, r = impl.Dlartg(g, f)
if i != m-1 {
e[i+1] = r
}
g = d[i+1] - p
r = (d[i]-g)*s + 2*c*b
p = s * r
d[i+1] = g + p
g = c*r - b
// If eigenvectors are desired, then save rotations.
if icompz > 0 {
work[i] = c
work[n-1+i] = -s
}
}
// If eigenvectors are desired, then apply saved rotations.
if icompz > 0 {
mm := m - l + 1
impl.Dlasr(blas.Right, lapack.Variable, lapack.Backward,
n, mm, work[l:], work[n-1+l:], z[l:], ldz)
}
d[l] -= p
e[l] = g
goto Fourty
// Eigenvalue found.
Eighty:
d[l] = p
l++
if l <= lend {
goto Fourty
}
goto OneFourty
} else {
// QR Iteration.
// Look for small superdiagonal element.
Ninety:
if l != lend {
lendp1 := lend + 1
for m = l; m >= lendp1; m-- {
v := math.Abs(e[m-1])
if v*v <= (eps2*math.Abs(d[m])*math.Abs(d[m-1]) + safmin) {
goto OneTen
if lend > l {
// QL Iteration. Look for small subdiagonal element.
for {
if l != lend {
for m = l; m < lend; m++ {
v := math.Abs(e[m])
if v*v <= (eps2*math.Abs(d[m]))*math.Abs(d[m+1])+safmin {
break
}
}
} else {
m = lend
}
if m < lend {
e[m] = 0
}
p = d[l]
if m == l {
// Eigenvalue found.
d[l] = p
l++
if l > lend {
break
}
continue
}
// If remaining matrix is 2×2, use Dlae2 to compute its eigensystem.
if m == l+1 {
if icompz > 0 {
d[l], d[l+1], work[l], work[n-1+l] = impl.Dlaev2(d[l], e[l], d[l+1])
impl.Dlasr(blas.Right, lapack.Variable, lapack.Backward,
n, 2, work[l:], work[n-1+l:], z[l:], ldz)
} else {
d[l], d[l+1] = impl.Dlae2(d[l], e[l], d[l+1])
}
e[l] = 0
l += 2
if l > lend {
break
}
continue
}
if jtot == nmaxit {
break
}
jtot++
// Form shift
g = (d[l+1] - p) / (2 * e[l])
r = impl.Dlapy2(g, 1)
g = d[m] - p + e[l]/(g+math.Copysign(r, g))
s = 1
c = 1
p = 0
// Inner loop
for i := m - 1; i >= l; i-- {
f := s * e[i]
b := c * e[i]
c, s, r = impl.Dlartg(g, f)
if i != m-1 {
e[i+1] = r
}
g = d[i+1] - p
r = (d[i]-g)*s + 2*c*b
p = s * r
d[i+1] = g + p
g = c*r - b
// If eigenvectors are desired, then save rotations.
if icompz > 0 {
work[i] = c
work[n-1+i] = -s
}
}
// If eigenvectors are desired, then apply saved rotations.
if icompz > 0 {
mm := m - l + 1
impl.Dlasr(blas.Right, lapack.Variable, lapack.Backward,
n, mm, work[l:], work[n-1+l:], z[l:], ldz)
}
d[l] -= p
e[l] = g
}
}
m = lend
OneTen:
if m > lend {
e[m-1] = 0
}
p = d[l]
if m == l {
goto OneThirty
}
} else {
// QR Iteration.
// Look for small superdiagonal element.
for {
if l != lend {
for m = l; m > lend; m-- {
v := math.Abs(e[m-1])
if v*v <= (eps2*math.Abs(d[m])*math.Abs(d[m-1]) + safmin) {
break
}
}
} else {
m = lend
}
if m > lend {
e[m-1] = 0
}
p = d[l]
if m == l {
// Eigenvalue found
d[l] = p
l--
if l < lend {
break
}
continue
}
// If remaining matrix is 2×2, use Dlae2 to compute its eigenvalues.
if m == l-1 {
if icompz > 0 {
d[l-1], d[l], work[m], work[n-1+m] = impl.Dlaev2(d[l-1], e[l-1], d[l])
impl.Dlasr(blas.Right, lapack.Variable, lapack.Forward,
n, 2, work[m:], work[n-1+m:], z[l-1:], ldz)
} else {
d[l-1], d[l] = impl.Dlae2(d[l-1], e[l-1], d[l])
}
e[l-1] = 0
l -= 2
if l >= lend {
goto Ninety
}
goto OneFourty
}
if jtot == nmaxit {
goto OneFourty
}
jtot++
// If remaining matrix is 2×2, use Dlae2 to compute its eigenvalues.
if m == l-1 {
if icompz > 0 {
d[l-1], d[l], work[m], work[n-1+m] = impl.Dlaev2(d[l-1], e[l-1], d[l])
impl.Dlasr(blas.Right, lapack.Variable, lapack.Forward,
n, 2, work[m:], work[n-1+m:], z[l-1:], ldz)
} else {
d[l-1], d[l] = impl.Dlae2(d[l-1], e[l-1], d[l])
}
e[l-1] = 0
l -= 2
if l < lend {
break
}
continue
}
if jtot == nmaxit {
break
}
jtot++
// Form shift.
g = (d[l-1] - p) / (2 * e[l-1])
r = impl.Dlapy2(g, 1)
g = d[m] - p + (e[l-1])/(g+math.Copysign(r, g))
// Form shift.
g = (d[l-1] - p) / (2 * e[l-1])
r = impl.Dlapy2(g, 1)
g = d[m] - p + (e[l-1])/(g+math.Copysign(r, g))
s = 1
c = 1
p = 0
s = 1
c = 1
p = 0
// Inner loop.
for i := m; i < l; i++ {
f := s * e[i]
b := c * e[i]
c, s, r = impl.Dlartg(g, f)
if i != m {
e[i-1] = r
}
g = d[i] - p
r = (d[i+1]-g)*s + 2*c*b
p = s * r
d[i] = g + p
g = c*r - b
// Inner loop.
for i := m; i < l; i++ {
f := s * e[i]
b := c * e[i]
c, s, r = impl.Dlartg(g, f)
if i != m {
e[i-1] = r
}
g = d[i] - p
r = (d[i+1]-g)*s + 2*c*b
p = s * r
d[i] = g + p
g = c*r - b
// If eigenvectors are desired, then save rotations.
if icompz > 0 {
work[i] = c
work[n-1+i] = s
// If eigenvectors are desired, then save rotations.
if icompz > 0 {
work[i] = c
work[n-1+i] = s
}
}
// If eigenvectors are desired, then apply saved rotations.
if icompz > 0 {
mm := l - m + 1
impl.Dlasr(blas.Right, lapack.Variable, lapack.Forward,
n, mm, work[m:], work[n-1+m:], z[m:], ldz)
}
d[l] -= p
e[l-1] = g
}
}
// If eigenvectors are desired, then apply saved rotations.
if icompz > 0 {
mm := l - m + 1
impl.Dlasr(blas.Right, lapack.Variable, lapack.Forward,
n, mm, work[m:], work[n-1+m:], z[m:], ldz)
// Undo scaling if necessary.
switch iscale {
case down:
impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv+1, 1, d[lsv:], n)
impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv, 1, e[lsv:], n)
case up:
impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv+1, 1, e[lsv:], n)
impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv, 1, e[lsv:], n)
}
d[l] -= p
e[l-1] = g
goto Ninety
// Eigenvalue found
OneThirty:
d[l] = p
l--
if l >= lend {
goto Ninety
// Check for no convergence to an eigenvalue after a total of n*maxit iterations.
if jtot >= nmaxit {
break
}
goto OneFourty
}
// Undo scaling if necessary.
OneFourty:
switch iscale {
case down:
impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv+1, 1, d[lsv:], n)
impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv, 1, e[lsv:], n)
case up:
impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv+1, 1, e[lsv:], n)
impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv, 1, e[lsv:], n)
}
// Check for no convergence to an eigenvalue after a total of n*maxit iterations.
if jtot < nmaxit {
goto Ten
}
for i := 0; i < n-1; i++ {
if e[i] != 0 {
@@ -361,29 +372,4 @@ OneFourty:
}
}
return true
// Order eigenvalues and eigenvectors.
OneSixty:
if icompz == 0 {
impl.Dlasrt(lapack.SortIncreasing, n, d)
} else {
// TODO(btracey): Consider replacing this sort with a call to sort.Sort.
for ii := 1; ii < n; ii++ {
i := ii - 1
k := i
p := d[i]
for j := ii; j < n; j++ {
if d[j] < p {
k = j
p = d[j]
}
}
if k != i {
d[k] = d[i]
d[i] = p
bi.Dswap(n, z[i:], ldz, z[k:], ldz)
}
}
}
return true
}