mirror of
https://github.com/gonum/gonum.git
synced 2025-10-16 12:10:37 +08:00
blas: imported blas as a subtree
This commit is contained in:
226
blas/native/internal/math32/math_test.go
Normal file
226
blas/native/internal/math32/math_test.go
Normal file
@@ -0,0 +1,226 @@
|
||||
// Copyright ©2015 The gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package math32
|
||||
|
||||
import (
|
||||
"math"
|
||||
"testing"
|
||||
"testing/quick"
|
||||
|
||||
"github.com/gonum/floats"
|
||||
)
|
||||
|
||||
const tol = 1e-7
|
||||
|
||||
func TestAbs(t *testing.T) {
|
||||
f := func(x float32) bool {
|
||||
y := Abs(x)
|
||||
return y == float32(math.Abs(float64(x)))
|
||||
}
|
||||
if err := quick.Check(f, nil); err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestCopySign(t *testing.T) {
|
||||
f := func(x struct{ X, Y float32 }) bool {
|
||||
y := Copysign(x.X, x.Y)
|
||||
return y == float32(math.Copysign(float64(x.X), float64(x.Y)))
|
||||
}
|
||||
if err := quick.Check(f, nil); err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestHypot(t *testing.T) {
|
||||
f := func(x struct{ X, Y float32 }) bool {
|
||||
y := Hypot(x.X, x.Y)
|
||||
if math.Hypot(float64(x.X), float64(x.Y)) > math.MaxFloat32 {
|
||||
return true
|
||||
}
|
||||
return floats.EqualWithinRel(float64(y), math.Hypot(float64(x.X), float64(x.Y)), tol)
|
||||
}
|
||||
if err := quick.Check(f, nil); err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestInf(t *testing.T) {
|
||||
if float64(Inf(1)) != math.Inf(1) || float64(Inf(-1)) != math.Inf(-1) {
|
||||
t.Error("float32(inf) not infinite")
|
||||
}
|
||||
}
|
||||
|
||||
func TestIsInf(t *testing.T) {
|
||||
posInf := float32(math.Inf(1))
|
||||
negInf := float32(math.Inf(-1))
|
||||
if !IsInf(posInf, 0) || !IsInf(negInf, 0) || !IsInf(posInf, 1) || !IsInf(negInf, -1) || IsInf(posInf, -1) || IsInf(negInf, 1) {
|
||||
t.Error("unexpected isInf value")
|
||||
}
|
||||
f := func(x struct {
|
||||
F float32
|
||||
Sign int
|
||||
}) bool {
|
||||
y := IsInf(x.F, x.Sign)
|
||||
return y == math.IsInf(float64(x.F), x.Sign)
|
||||
}
|
||||
if err := quick.Check(f, nil); err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestIsNaN(t *testing.T) {
|
||||
f := func(x float32) bool {
|
||||
y := IsNaN(x)
|
||||
return y == math.IsNaN(float64(x))
|
||||
}
|
||||
if err := quick.Check(f, nil); err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestNaN(t *testing.T) {
|
||||
if !math.IsNaN(float64(NaN())) {
|
||||
t.Errorf("float32(nan) is a number: %f", NaN())
|
||||
}
|
||||
}
|
||||
|
||||
func TestSqrt(t *testing.T) {
|
||||
f := func(x float32) bool {
|
||||
y := Sqrt(x)
|
||||
if IsNaN(y) && IsNaN(sqrt(x)) {
|
||||
return true
|
||||
}
|
||||
return floats.EqualWithinRel(float64(y), float64(sqrt(x)), tol)
|
||||
}
|
||||
if err := quick.Check(f, nil); err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
}
|
||||
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// The original C code and the long comment below are
|
||||
// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
|
||||
// came with this notice. The go code is a simplified
|
||||
// version of the original C.
|
||||
//
|
||||
// ====================================================
|
||||
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
//
|
||||
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
// Permission to use, copy, modify, and distribute this
|
||||
// software is freely granted, provided that this notice
|
||||
// is preserved.
|
||||
// ====================================================
|
||||
//
|
||||
// __ieee754_sqrt(x)
|
||||
// Return correctly rounded sqrt.
|
||||
// -----------------------------------------
|
||||
// | Use the hardware sqrt if you have one |
|
||||
// -----------------------------------------
|
||||
// Method:
|
||||
// Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
// 1. Normalization
|
||||
// Scale x to y in [1,4) with even powers of 2:
|
||||
// find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
|
||||
// sqrt(x) = 2**k * sqrt(y)
|
||||
// 2. Bit by bit computation
|
||||
// Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
||||
// i 0
|
||||
// i+1 2
|
||||
// s = 2*q , and y = 2 * ( y - q ). (1)
|
||||
// i i i i
|
||||
//
|
||||
// To compute q from q , one checks whether
|
||||
// i+1 i
|
||||
//
|
||||
// -(i+1) 2
|
||||
// (q + 2 ) <= y. (2)
|
||||
// i
|
||||
// -(i+1)
|
||||
// If (2) is false, then q = q ; otherwise q = q + 2 .
|
||||
// i+1 i i+1 i
|
||||
//
|
||||
// With some algebraic manipulation, it is not difficult to see
|
||||
// that (2) is equivalent to
|
||||
// -(i+1)
|
||||
// s + 2 <= y (3)
|
||||
// i i
|
||||
//
|
||||
// The advantage of (3) is that s and y can be computed by
|
||||
// i i
|
||||
// the following recurrence formula:
|
||||
// if (3) is false
|
||||
//
|
||||
// s = s , y = y ; (4)
|
||||
// i+1 i i+1 i
|
||||
//
|
||||
// otherwise,
|
||||
// -i -(i+1)
|
||||
// s = s + 2 , y = y - s - 2 (5)
|
||||
// i+1 i i+1 i i
|
||||
//
|
||||
// One may easily use induction to prove (4) and (5).
|
||||
// Note. Since the left hand side of (3) contain only i+2 bits,
|
||||
// it does not necessary to do a full (53-bit) comparison
|
||||
// in (3).
|
||||
// 3. Final rounding
|
||||
// After generating the 53 bits result, we compute one more bit.
|
||||
// Together with the remainder, we can decide whether the
|
||||
// result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
||||
// (it will never equal to 1/2ulp).
|
||||
// The rounding mode can be detected by checking whether
|
||||
// huge + tiny is equal to huge, and whether huge - tiny is
|
||||
// equal to huge for some floating point number "huge" and "tiny".
|
||||
//
|
||||
func sqrt(x float32) float32 {
|
||||
// special cases
|
||||
switch {
|
||||
case x == 0 || IsNaN(x) || IsInf(x, 1):
|
||||
return x
|
||||
case x < 0:
|
||||
return NaN()
|
||||
}
|
||||
ix := math.Float32bits(x)
|
||||
// normalize x
|
||||
exp := int((ix >> shift) & mask)
|
||||
if exp == 0 { // subnormal x
|
||||
for ix&1<<shift == 0 {
|
||||
ix <<= 1
|
||||
exp--
|
||||
}
|
||||
exp++
|
||||
}
|
||||
exp -= bias // unbias exponent
|
||||
ix &^= mask << shift
|
||||
ix |= 1 << shift
|
||||
if exp&1 == 1 { // odd exp, double x to make it even
|
||||
ix <<= 1
|
||||
}
|
||||
exp >>= 1 // exp = exp/2, exponent of square root
|
||||
// generate sqrt(x) bit by bit
|
||||
ix <<= 1
|
||||
var q, s uint32 // q = sqrt(x)
|
||||
r := uint32(1 << (shift + 1)) // r = moving bit from MSB to LSB
|
||||
for r != 0 {
|
||||
t := s + r
|
||||
if t <= ix {
|
||||
s = t + r
|
||||
ix -= t
|
||||
q += r
|
||||
}
|
||||
ix <<= 1
|
||||
r >>= 1
|
||||
}
|
||||
// final rounding
|
||||
if ix != 0 { // remainder, result not exact
|
||||
q += q & 1 // round according to extra bit
|
||||
}
|
||||
ix = q>>1 + uint32(exp-1+bias)<<shift // significand + biased exponent
|
||||
return math.Float32frombits(ix)
|
||||
}
|
Reference in New Issue
Block a user