mirror of
https://github.com/gonum/gonum.git
synced 2025-10-07 08:01:20 +08:00
stat/combin: Add CombinationToIndex and IndexToCombination functions (#1054)
* stat/combin: Add CombinationToIndex and IndexToCombination functions
This commit is contained in:
@@ -6,6 +6,7 @@ package combin
|
||||
|
||||
import (
|
||||
"math"
|
||||
"sort"
|
||||
)
|
||||
|
||||
const (
|
||||
@@ -183,7 +184,95 @@ func nextCombination(s []int, n, k int) {
|
||||
}
|
||||
}
|
||||
|
||||
// Cartesian returns indices into the cartesian product for sets of the given lengths. The Cartesian
|
||||
// CombinationIndex returns the index of the given combination.
|
||||
//
|
||||
// The functions CombinationIndex and IndexToCombination define a bijection
|
||||
// between the integers and the Binomial(n, k) number of possible combinations.
|
||||
// CombinationIndex returns the inverse of IndexToCombination.
|
||||
//
|
||||
// CombinationIndex panics if comb is not a sorted combination of the first
|
||||
// [0,n) integers, if n or k are non-negative, or if k is greater than n.
|
||||
func CombinationIndex(comb []int, n, k int) int {
|
||||
if n < 0 || k < 0 {
|
||||
panic(badNegInput)
|
||||
}
|
||||
if n < k {
|
||||
panic(badSetSize)
|
||||
}
|
||||
if len(comb) != k {
|
||||
panic("combin: bad length combination")
|
||||
}
|
||||
if !sort.IntsAreSorted(comb) {
|
||||
panic("combin: input combination is not sorted")
|
||||
}
|
||||
contains := make(map[int]struct{}, k)
|
||||
for _, v := range comb {
|
||||
contains[v] = struct{}{}
|
||||
}
|
||||
if len(contains) != k {
|
||||
panic("combin: comb contains non-unique elements")
|
||||
}
|
||||
// This algorithm iterates in reverse lexicograhpic order.
|
||||
// Flip the index and values to swap the order.
|
||||
rev := make([]int, k)
|
||||
for i, v := range comb {
|
||||
rev[len(comb)-i-1] = n - v - 1
|
||||
}
|
||||
idx := 0
|
||||
for i, v := range rev {
|
||||
if v >= i+1 {
|
||||
idx += Binomial(v, i+1)
|
||||
}
|
||||
}
|
||||
return Binomial(n, k) - 1 - idx
|
||||
}
|
||||
|
||||
// IndexToCombination returns the combination corresponding to the given index.
|
||||
//
|
||||
// The functions CombinationIndex and IndexToCombination define a bijection
|
||||
// between the integers and the Binomial(n, k) number of possible combinations.
|
||||
// IndexToCombination returns the inverse of CombinationIndex (up to the order
|
||||
// of the elements).
|
||||
//
|
||||
// The combination is stored in-place into dst if dst is non-nil, otherwise
|
||||
// a new slice is allocated and returned.
|
||||
//
|
||||
// IndexToCombination panics if n or k are non-negative, if k is greater than n,
|
||||
// or if idx is not in [0, Binomial(n,k)-1]. IndexToCombination will also panic
|
||||
// if dst is non-nil and len(dst) is not k.
|
||||
func IndexToCombination(dst []int, idx, n, k int) []int {
|
||||
if idx < 0 || idx >= Binomial(n, k) {
|
||||
panic("combin: invalid index")
|
||||
}
|
||||
if dst == nil {
|
||||
dst = make([]int, k)
|
||||
} else if len(dst) != k {
|
||||
panic(badInput)
|
||||
}
|
||||
// The base algorithm indexes in reverse lexicographic order
|
||||
// flip the values and the index.
|
||||
idx = Binomial(n, k) - 1 - idx
|
||||
for i := range dst {
|
||||
// Find the largest number m such that Binomial(m, k-i) <= idx.
|
||||
// This is one less than the first number such that it is larger.
|
||||
m := sort.Search(n, func(m int) bool {
|
||||
if m < k-i {
|
||||
return false
|
||||
}
|
||||
return Binomial(m, k-i) > idx
|
||||
})
|
||||
m--
|
||||
// Normally this is put m into the last free spot, but we
|
||||
// reverse the index and the value.
|
||||
dst[i] = n - m - 1
|
||||
if m >= k-i {
|
||||
idx -= Binomial(m, k-i)
|
||||
}
|
||||
}
|
||||
return dst
|
||||
}
|
||||
|
||||
// Cartesian returns the cartesian product of the slices in data. The Cartesian
|
||||
// product of two sets is the set of all combinations of the items. For example,
|
||||
// given the input
|
||||
// []int{2, 3, 1}
|
||||
|
@@ -1,31 +0,0 @@
|
||||
// Copyright ©2019 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package combin_test
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"gonum.org/v1/gonum/stat/combin"
|
||||
)
|
||||
|
||||
func ExampleCombinations() {
|
||||
data := []string{"a", "b", "c", "d", "e"}
|
||||
cs := combin.Combinations(len(data), 2)
|
||||
for _, c := range cs {
|
||||
fmt.Printf("%s%s\n", data[c[0]], data[c[1]])
|
||||
}
|
||||
|
||||
// Output:
|
||||
// ab
|
||||
// ac
|
||||
// ad
|
||||
// ae
|
||||
// bc
|
||||
// bd
|
||||
// be
|
||||
// cd
|
||||
// ce
|
||||
// de
|
||||
}
|
@@ -7,6 +7,7 @@ package combin
|
||||
import (
|
||||
"math/big"
|
||||
"reflect"
|
||||
"strconv"
|
||||
"testing"
|
||||
|
||||
"gonum.org/v1/gonum/floats"
|
||||
@@ -181,38 +182,52 @@ func TestCombinationGenerator(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestCartesian(t *testing.T) {
|
||||
// First, test with a known return.
|
||||
lens := []int{2, 3, 4}
|
||||
want := [][]int{
|
||||
{0, 0, 0},
|
||||
{0, 0, 1},
|
||||
{0, 0, 2},
|
||||
{0, 0, 3},
|
||||
{0, 1, 0},
|
||||
{0, 1, 1},
|
||||
{0, 1, 2},
|
||||
{0, 1, 3},
|
||||
{0, 2, 0},
|
||||
{0, 2, 1},
|
||||
{0, 2, 2},
|
||||
{0, 2, 3},
|
||||
{1, 0, 0},
|
||||
{1, 0, 1},
|
||||
{1, 0, 2},
|
||||
{1, 0, 3},
|
||||
{1, 1, 0},
|
||||
{1, 1, 1},
|
||||
{1, 1, 2},
|
||||
{1, 1, 3},
|
||||
{1, 2, 0},
|
||||
{1, 2, 1},
|
||||
{1, 2, 2},
|
||||
{1, 2, 3},
|
||||
func TestCombinationIndex(t *testing.T) {
|
||||
for cas, s := range []struct {
|
||||
n, k int
|
||||
}{
|
||||
{6, 3},
|
||||
{4, 4},
|
||||
{10, 1},
|
||||
{8, 2},
|
||||
} {
|
||||
n := s.n
|
||||
k := s.k
|
||||
combs := make(map[string]struct{})
|
||||
for i := 0; i < Binomial(n, k); i++ {
|
||||
comb := IndexToCombination(nil, i, n, k)
|
||||
idx := CombinationIndex(comb, n, k)
|
||||
if idx != i {
|
||||
t.Errorf("Cas %d: combination mismatch. Want %d, got %d", cas, i, idx)
|
||||
}
|
||||
combs[intSliceToKey(comb)] = struct{}{}
|
||||
}
|
||||
if len(combs) != Binomial(n, k) {
|
||||
t.Errorf("Case %d: not all generated combinations were unique", cas)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func intSliceToKey(s []int) string {
|
||||
var str string
|
||||
for _, v := range s {
|
||||
str += strconv.Itoa(v) + "_"
|
||||
}
|
||||
return str
|
||||
}
|
||||
|
||||
// TestCombinationOrder tests that the different Combinations methods
|
||||
// agree on the iteration order.
|
||||
func TestCombinationOrder(t *testing.T) {
|
||||
n := 7
|
||||
k := 3
|
||||
list := Combinations(n, k)
|
||||
for i, v := range list {
|
||||
idx := CombinationIndex(v, n, k)
|
||||
if idx != i {
|
||||
t.Errorf("Combinations and CombinationIndex mismatch")
|
||||
break
|
||||
}
|
||||
got := Cartesian(lens)
|
||||
if !intSosMatch(want, got) {
|
||||
t.Errorf("cartesian data mismatch.\nwant:\n%v\ngot:\n%v", want, got)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -247,3 +262,38 @@ func TestIdxSubFor(t *testing.T) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestCartesian(t *testing.T) {
|
||||
// First, test with a known return.
|
||||
lens := []int{2, 3, 4}
|
||||
want := [][]int{
|
||||
{0, 0, 0},
|
||||
{0, 0, 1},
|
||||
{0, 0, 2},
|
||||
{0, 0, 3},
|
||||
{0, 1, 0},
|
||||
{0, 1, 1},
|
||||
{0, 1, 2},
|
||||
{0, 1, 3},
|
||||
{0, 2, 0},
|
||||
{0, 2, 1},
|
||||
{0, 2, 2},
|
||||
{0, 2, 3},
|
||||
{1, 0, 0},
|
||||
{1, 0, 1},
|
||||
{1, 0, 2},
|
||||
{1, 0, 3},
|
||||
{1, 1, 0},
|
||||
{1, 1, 1},
|
||||
{1, 1, 2},
|
||||
{1, 1, 3},
|
||||
{1, 2, 0},
|
||||
{1, 2, 1},
|
||||
{1, 2, 2},
|
||||
{1, 2, 3},
|
||||
}
|
||||
got := Cartesian(lens)
|
||||
if !intSosMatch(want, got) {
|
||||
t.Errorf("cartesian data mismatch.\nwant:\n%v\ngot:\n%v", want, got)
|
||||
}
|
||||
}
|
||||
|
130
stat/combin/combinations_example_test.go
Normal file
130
stat/combin/combinations_example_test.go
Normal file
@@ -0,0 +1,130 @@
|
||||
// Copyright ©2019 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package combin_test
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"gonum.org/v1/gonum/stat/combin"
|
||||
)
|
||||
|
||||
func ExampleCombinations_Index() {
|
||||
data := []string{"a", "b", "c", "d", "e"}
|
||||
cs := combin.Combinations(len(data), 2)
|
||||
for _, c := range cs {
|
||||
fmt.Printf("%s%s\n", data[c[0]], data[c[1]])
|
||||
}
|
||||
|
||||
// Output:
|
||||
// ab
|
||||
// ac
|
||||
// ad
|
||||
// ae
|
||||
// bc
|
||||
// bd
|
||||
// be
|
||||
// cd
|
||||
// ce
|
||||
// de
|
||||
}
|
||||
|
||||
func ExampleCombinations() {
|
||||
// combin provides several ways to work with the combinations of
|
||||
// different objects. Combinations generates them directly.
|
||||
fmt.Println("Generate list:")
|
||||
n := 5
|
||||
k := 3
|
||||
list := combin.Combinations(n, k)
|
||||
for i, v := range list {
|
||||
fmt.Println(i, v)
|
||||
}
|
||||
// The returned values can be used to index into a data structure.
|
||||
data := []string{"a", "b", "c", "d", "e"}
|
||||
cs := combin.Combinations(len(data), 2)
|
||||
fmt.Println("\nString combinations:")
|
||||
for _, c := range cs {
|
||||
fmt.Printf("%s%s\n", data[c[0]], data[c[1]])
|
||||
}
|
||||
// This is easy, but the number of combinations can be very large,
|
||||
// and generating all at once can use a lot of memory.
|
||||
|
||||
// Output:
|
||||
// Generate list:
|
||||
// 0 [0 1 2]
|
||||
// 1 [0 1 3]
|
||||
// 2 [0 1 4]
|
||||
// 3 [0 2 3]
|
||||
// 4 [0 2 4]
|
||||
// 5 [0 3 4]
|
||||
// 6 [1 2 3]
|
||||
// 7 [1 2 4]
|
||||
// 8 [1 3 4]
|
||||
// 9 [2 3 4]
|
||||
//
|
||||
// String combinations:
|
||||
// ab
|
||||
// ac
|
||||
// ad
|
||||
// ae
|
||||
// bc
|
||||
// bd
|
||||
// be
|
||||
// cd
|
||||
// ce
|
||||
// de
|
||||
|
||||
}
|
||||
|
||||
func ExampleCombinationGenerator() {
|
||||
// combin provides several ways to work with the combinations of
|
||||
// different objects. CombinationGenerator constructs an iterator
|
||||
// for the combinations.
|
||||
n := 5
|
||||
k := 3
|
||||
gen := combin.NewCombinationGenerator(n, k)
|
||||
idx := 0
|
||||
for gen.Next() {
|
||||
fmt.Println(idx, gen.Combination(nil)) // can also store in-place.
|
||||
idx++
|
||||
}
|
||||
// Output:
|
||||
// 0 [0 1 2]
|
||||
// 1 [0 1 3]
|
||||
// 2 [0 1 4]
|
||||
// 3 [0 2 3]
|
||||
// 4 [0 2 4]
|
||||
// 5 [0 3 4]
|
||||
// 6 [1 2 3]
|
||||
// 7 [1 2 4]
|
||||
// 8 [1 3 4]
|
||||
// 9 [2 3 4]
|
||||
}
|
||||
|
||||
func ExampleIndexToCombination() {
|
||||
// combin provides several ways to work with the combinations of
|
||||
// different objects. IndexToCombination allows random access into
|
||||
// the combination order. Combined with CombinationIndex this
|
||||
// provides a correspondence between integers and combinations.
|
||||
n := 5
|
||||
k := 3
|
||||
comb := make([]int, k)
|
||||
for i := 0; i < combin.Binomial(n, k); i++ {
|
||||
combin.IndexToCombination(comb, i, n, k) // can also use nil.
|
||||
idx := combin.CombinationIndex(comb, n, k)
|
||||
fmt.Println(i, comb, idx)
|
||||
}
|
||||
|
||||
// Output:
|
||||
// 0 [0 1 2] 0
|
||||
// 1 [0 1 3] 1
|
||||
// 2 [0 1 4] 2
|
||||
// 3 [0 2 3] 3
|
||||
// 4 [0 2 4] 4
|
||||
// 5 [0 3 4] 5
|
||||
// 6 [1 2 3] 6
|
||||
// 7 [1 2 4] 7
|
||||
// 8 [1 3 4] 8
|
||||
// 9 [2 3 4] 9
|
||||
}
|
Reference in New Issue
Block a user