network: add edge-weighted PageRank implementations

This commit is contained in:
Takeshi Yoneda
2018-06-10 16:57:38 +09:00
committed by Dan Kortschak
parent e4cc524e41
commit d05be515f6
4 changed files with 314 additions and 6 deletions

View File

@@ -61,6 +61,7 @@ source{d} <hello@sourced.tech>
Shawn Smith <shawnpsmith@gmail.com>
Spencer Lyon <spencerlyon2@gmail.com>
Steve McCoy <mccoyst@gmail.com>
Takeshi Yoneda <cz.rk.t0415y.g@gmail.com>
The University of Adelaide
The University of Minnesota
The University of Washington

View File

@@ -67,6 +67,7 @@ Sebastien Binet <seb.binet@gmail.com>
Shawn Smith <shawnpsmith@gmail.com>
Spencer Lyon <spencerlyon2@gmail.com>
Steve McCoy <mccoyst@gmail.com>
Takeshi Yoneda <cz.rk.t0415y.g@gmail.com>
Tobin Harding <me@tobin.cc>
Vladimír Chalupecký <vladimir.chalupecky@gmail.com>
Yevgeniy Vahlis <evahlis@gmail.com>

View File

@@ -18,8 +18,197 @@ import (
// using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
// If g is a graph.WeightedDirected, an edge-weighted PageRank is calculated.
func PageRank(g graph.Directed, damp, tol float64) map[int64]float64 {
// PageRank is implemented according to "How Google Finds Your Needle
if g, ok := g.(graph.WeightedDirected); ok {
return edgeWeightedPageRank(g, damp, tol)
}
return pageRank(g, damp, tol)
}
// PageRankSparse returns the PageRank weights for nodes of the sparse directed
// graph g using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
// If g is a graph.WeightedDirected, an edge-weighted PageRank is calculated.
func PageRankSparse(g graph.Directed, damp, tol float64) map[int64]float64 {
if g, ok := g.(graph.WeightedDirected); ok {
return edgeWeightedPageRankSparse(g, damp, tol)
}
return pageRankSparse(g, damp, tol)
}
// edgeWeightedPageRank returns the PageRank weights for nodes of the weighted directed graph g
// using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func edgeWeightedPageRank(g graph.WeightedDirected, damp, tol float64) map[int64]float64 {
// edgeWeightedPageRank is implemented according to "How Google Finds Your Needle
// in the Web's Haystack" with the modification that
// the columns of hyperlink matrix H are calculated with edge weights.
//
// G.I^k = alpha.H.I^k + alpha.A.I^k + (1-alpha).1/n.1.I^k
//
// http://www.ams.org/samplings/feature-column/fcarc-pagerank
nodes := g.Nodes()
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
indexOf[n.ID()] = i
}
m := mat.NewDense(len(nodes), len(nodes), nil)
dangling := damp / float64(len(nodes))
for j, u := range nodes {
to := g.From(u.ID())
var z float64
for _, v := range to {
if w, ok := g.Weight(u.ID(), v.ID()); ok {
z += w
}
}
if z != 0 {
for _, v := range to {
if w, ok := g.Weight(u.ID(), v.ID()); ok {
m.Set(indexOf[v.ID()], j, (w*damp)/z)
}
}
} else {
for i := range nodes {
m.Set(i, j, dangling)
}
}
}
matrix := m.RawMatrix().Data
dt := (1 - damp) / float64(len(nodes))
for i := range matrix {
matrix[i] += dt
}
last := make([]float64, len(nodes))
for i := range last {
last[i] = 1
}
lastV := mat.NewVecDense(len(nodes), last)
vec := make([]float64, len(nodes))
var sum float64
for i := range vec {
r := rand.NormFloat64()
sum += r
vec[i] = r
}
f := 1 / sum
for i := range vec {
vec[i] *= f
}
v := mat.NewVecDense(len(nodes), vec)
for {
lastV, v = v, lastV
v.MulVec(m, lastV)
if normDiff(vec, last) < tol {
break
}
}
ranks := make(map[int64]float64, len(nodes))
for i, r := range v.RawVector().Data {
ranks[nodes[i].ID()] = r
}
return ranks
}
// edgeWeightedPageRankSparse returns the PageRank weights for nodes of the sparse weighted directed
// graph g using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func edgeWeightedPageRankSparse(g graph.WeightedDirected, damp, tol float64) map[int64]float64 {
// edgeWeightedPageRankSparse is implemented according to "How Google Finds Your Needle
// in the Web's Haystack" with the modification that
// the columns of hyperlink matrix H are calculated with edge weights.
//
// G.I^k = alpha.H.I^k + alpha.A.I^k + (1-alpha).1/n.1.I^k
//
// http://www.ams.org/samplings/feature-column/fcarc-pagerank
nodes := g.Nodes()
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
indexOf[n.ID()] = i
}
m := make(rowCompressedMatrix, len(nodes))
var dangling compressedRow
df := damp / float64(len(nodes))
for j, u := range nodes {
to := g.From(u.ID())
var z float64
for _, v := range to {
if w, ok := g.Weight(u.ID(), v.ID()); ok {
z += w
}
}
if z != 0 {
for _, v := range to {
if w, ok := g.Weight(u.ID(), v.ID()); ok {
m.addTo(indexOf[v.ID()], j, (w*damp)/z)
}
}
} else {
dangling.addTo(j, df)
}
}
last := make([]float64, len(nodes))
for i := range last {
last[i] = 1
}
lastV := mat.NewVecDense(len(nodes), last)
vec := make([]float64, len(nodes))
var sum float64
for i := range vec {
r := rand.NormFloat64()
sum += r
vec[i] = r
}
f := 1 / sum
for i := range vec {
vec[i] *= f
}
v := mat.NewVecDense(len(nodes), vec)
dt := (1 - damp) / float64(len(nodes))
for {
lastV, v = v, lastV
m.mulVecUnitary(v, lastV) // First term of the G matrix equation;
with := dangling.dotUnitary(lastV) // Second term;
away := onesDotUnitary(dt, lastV) // Last term.
floats.AddConst(with+away, v.RawVector().Data)
if normDiff(vec, last) < tol {
break
}
}
ranks := make(map[int64]float64, len(nodes))
for i, r := range v.RawVector().Data {
ranks[nodes[i].ID()] = r
}
return ranks
}
// pageRank returns the PageRank weights for nodes of the directed graph g
// using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func pageRank(g graph.Directed, damp, tol float64) map[int64]float64 {
// pageRank is implemented according to "How Google Finds Your Needle
// in the Web's Haystack".
//
// G.I^k = alpha.S.I^k + (1-alpha).1/n.1.I^k
@@ -87,12 +276,12 @@ func PageRank(g graph.Directed, damp, tol float64) map[int64]float64 {
return ranks
}
// PageRankSparse returns the PageRank weights for nodes of the sparse directed
// pageRankSparse returns the PageRank weights for nodes of the sparse directed
// graph g using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func PageRankSparse(g graph.Directed, damp, tol float64) map[int64]float64 {
// PageRankSparse is implemented according to "How Google Finds Your Needle
func pageRankSparse(g graph.Directed, damp, tol float64) map[int64]float64 {
// pageRankSparse is implemented according to "How Google Finds Your Needle
// in the Web's Haystack".
//
// G.I^k = alpha.H.I^k + alpha.A.I^k + (1-alpha).1/n.1.I^k

View File

@@ -91,7 +91,7 @@ func TestPageRank(t *testing.T) {
g.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v)})
}
}
got := PageRank(g, test.damp, test.tol)
got := pageRank(g, test.damp, test.tol)
prec := 1 - int(math.Log10(test.wantTol))
for n := range test.g {
if !floats.EqualWithinAbsOrRel(got[int64(n)], test.want[int64(n)], test.wantTol, test.wantTol) {
@@ -115,7 +115,124 @@ func TestPageRankSparse(t *testing.T) {
g.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v)})
}
}
got := PageRankSparse(g, test.damp, test.tol)
got := pageRankSparse(g, test.damp, test.tol)
prec := 1 - int(math.Log10(test.wantTol))
for n := range test.g {
if !floats.EqualWithinAbsOrRel(got[int64(n)], test.want[int64(n)], test.wantTol, test.wantTol) {
t.Errorf("unexpected PageRank result for test %d:\ngot: %v\nwant:%v",
i, orderedFloats(got, prec), orderedFloats(test.want, prec))
break
}
}
}
}
var edgeWeightedPageRankTests = []struct {
g []set
self, absent float64
edges map[int]map[int64]float64
damp float64
tol float64
wantTol float64
want map[int64]float64
}{
{
// This test case is created according to the result with the following python code
// on python 3.6.4 (using "networkx" of version 2.1)
//
// >>> import networkx as nx
// >>> D = nx.DiGraph()
// >>> D.add_weighted_edges_from([('A', 'B', 0.3), ('A','C', 1.2), ('B', 'A', 0.4), ('C', 'B', 0.3), ('D', 'A', 0.3), ('D', 'B', 2.1)])
// >>> nx.pagerank(D, alpha=0.85, tol=1e-10)
// {'A': 0.3409109390701202, 'B': 0.3522682754411842, 'C': 0.2693207854886954, 'D': 0.037500000000000006}
g: []set{
A: linksTo(B, C),
B: linksTo(A),
C: linksTo(B),
D: linksTo(A, B),
},
edges: map[int]map[int64]float64{
A: {
B: 0.3,
C: 1.2,
},
B: {
A: 0.4,
},
C: {
B: 0.3,
},
D: {
A: 0.3,
B: 2.1,
},
},
damp: 0.85,
tol: 1e-10,
wantTol: 1e-8,
want: map[int64]float64{
A: 0.3409120160955594,
B: 0.3522678129306601,
C: 0.2693201709737804,
D: 0.037500000000000006,
},
},
}
func TestEdgeWeightedPageRank(t *testing.T) {
for i, test := range edgeWeightedPageRankTests {
g := simple.NewWeightedDirectedGraph(test.self, test.absent)
for u, e := range test.g {
// Add nodes that are not defined by an edge.
if !g.Has(int64(u)) {
g.AddNode(simple.Node(u))
}
ws, ok := test.edges[u]
if !ok {
t.Errorf("edges not found for %v", u)
}
for v := range e {
if w, ok := ws[v]; ok {
g.SetWeightedEdge(g.NewWeightedEdge(simple.Node(u), simple.Node(v), w))
}
}
}
got := edgeWeightedPageRank(g, test.damp, test.tol)
prec := 1 - int(math.Log10(test.wantTol))
for n := range test.g {
if !floats.EqualWithinAbsOrRel(got[int64(n)], test.want[int64(n)], test.wantTol, test.wantTol) {
t.Errorf("unexpected PageRank result for test %d:\ngot: %v\nwant:%v",
i, orderedFloats(got, prec), orderedFloats(test.want, prec))
break
}
}
}
}
func TestEdgeWeightedPageRankSparse(t *testing.T) {
for i, test := range edgeWeightedPageRankTests {
g := simple.NewWeightedDirectedGraph(test.self, test.absent)
for u, e := range test.g {
// Add nodes that are not defined by an edge.
if !g.Has(int64(u)) {
g.AddNode(simple.Node(u))
}
ws, ok := test.edges[u]
if !ok {
t.Errorf("edges not found for %v", u)
}
for v := range e {
if w, ok := ws[v]; ok {
g.SetWeightedEdge(g.NewWeightedEdge(simple.Node(u), simple.Node(v), w))
}
}
}
got := edgeWeightedPageRankSparse(g, test.damp, test.tol)
prec := 1 - int(math.Log10(test.wantTol))
for n := range test.g {
if !floats.EqualWithinAbsOrRel(got[int64(n)], test.want[int64(n)], test.wantTol, test.wantTol) {