Pull from master

This commit is contained in:
btracey
2015-09-05 13:55:27 -06:00
4 changed files with 458 additions and 4 deletions

View File

@@ -14,6 +14,7 @@ import (
// Copied from lapack/native. Keep in sync.
const (
absIncNotOne = "lapack: increment not one or negative one"
badDiag = "lapack: bad diag"
badDirect = "lapack: bad direct"
badIpiv = "lapack: insufficient permutation length"
badLdA = "lapack: index of a out of range"

119
native/dlacn2.go Normal file
View File

@@ -0,0 +1,119 @@
package native
import (
"math"
"github.com/gonum/blas/blas64"
)
// Dlacn2 estimates the 1-norm of an n×n matrix A using sequential updates with
// matrix-vector products provided externally.
//
// Dlacn2 is called sequentially. In between calls, x should be overwritten by
// A * X if kase == 1
// A^T * X if kase == 2
// all other prameters should be unchanged during sequential calls, and the updated
// values of est and kase should be used. On the final return (when kase is returned
// as 0), V = A * W, where est = norm(V) / norm(W).
//
// isign, v, and x must all have length n and will panic otherwise. isave is used
// for temporary storage.
func (impl Implementation) Dlacn2(n int, v, x []float64, isgn []int, est float64, kase int, isave [3]int) (float64, int) {
checkVector(n, x, 1)
checkVector(n, v, 1)
if len(isgn) < n {
panic("lapack: insufficient isgn length")
}
if isave[0] < 1 || isave[0] > 5 {
panic("lapack: bad isave value")
}
itmax := 5
bi := blas64.Implementation()
if kase == 0 {
for i := 0; i < n; i++ {
x[i] = 1 / float64(n)
}
kase = 1
isave[0] = 1
return est, kase
}
switch isave[0] {
default:
panic("unknown case")
case 1:
if n == 1 {
v[0] = x[0]
est = math.Abs(v[0])
kase = 0
return est, kase
}
est = bi.Dasum(n, x, 1)
for i := 0; i < n; i++ {
x[i] = math.Copysign(1, x[i])
isgn[i] = int(x[i])
}
kase = 2
isave[0] = 2
return est, kase
case 2:
isave[1] = bi.Idamax(n, x, 1)
isave[2] = 2
for i := 0; i < n; i++ {
x[i] = 0
}
x[isave[1]] = 1
kase = 1
isave[0] = 3
return est, kase
case 3:
bi.Dcopy(n, x, 1, v, 1)
estold := est
est = bi.Dasum(n, v, 1)
sameSigns := true
for i := 0; i < n; i++ {
if int(math.Copysign(1, x[i])) != isgn[i] {
sameSigns = false
break
}
}
if !sameSigns && est > estold {
for i := 0; i < n; i++ {
x[i] = math.Copysign(1, x[i])
isgn[i] = int(x[i])
}
kase = 2
isave[0] = 4
return est, kase
}
case 4:
jlast := isave[1]
isave[1] = bi.Idamax(n, x, 1)
if x[jlast] != math.Abs(x[isave[1]]) && isave[2] < itmax {
isave[2] += 1
for i := 0; i < n; i++ {
x[i] = 0
}
x[isave[1]] = 1
kase = 1
isave[0] = 3
return est, kase
}
case 5:
tmp := 2 * (bi.Dasum(n, x, 1)) / float64(3*n)
if tmp > est {
bi.Dcopy(n, x, 1, v, 1)
est = tmp
}
kase = 0
return est, kase
}
// Iteration complete. Final stage
altsgn := 1.0
for i := 0; i < n; i++ {
x[i] = altsgn * (1 + float64(i)/float64(n-1))
altsgn *= -1
}
kase = 1
isave[0] = 5
return est, kase
}

334
native/dlatrs.go Normal file
View File

@@ -0,0 +1,334 @@
package native
import (
"math"
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
)
// Dlatrs solves a triangular system of equations scaled to prevent overflow. It
// solves
// A * x = scale * b if trans == blas.NoTrans
// A^T * x = scale * b if trans == blas.Trans
// where the scale s is set for numeric stability.
//
// A is an n×n triangular matrix. On entry, the slice x contains the values of
// of b, and on exit it contains the solution vector x.
//
// If normin == true, cnorm is an input and cnorm[j] contains the norm of the off-diagonal
// part of the j^th column of A. If trans == blas.NoTrans, cnorm[j] must be greater
// than or equal to the infinity norm, and greater than or equal to the one-norm
// otherwise. If normin == false, then cnorm is treated as an output, and is set
// to contain the 1-norm of the off-diagonal part of the j^th column of A.
func (impl Implementation) Dlatrs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, normin bool, n int, a []float64, lda int, x []float64, cnorm []float64) (scale float64) {
if uplo != blas.Upper && uplo != blas.Lower {
panic(badUplo)
}
if trans != blas.Trans && trans != blas.NoTrans {
panic(badTrans)
}
if diag != blas.Unit && diag != blas.NonUnit {
panic(badDiag)
}
upper := uplo == blas.Upper
noTrans := trans == blas.NoTrans
nonUnit := diag == blas.NonUnit
if n < 0 {
panic(nLT0)
}
checkMatrix(n, n, a, lda)
checkVector(n, x, 1)
checkVector(n, cnorm, 1)
if n == 0 {
return
}
scale = 1
bi := blas64.Implementation()
if !normin {
if upper {
for j := 0; j < n; j++ {
cnorm[j] = bi.Dasum(j, a[j:], lda)
}
} else {
for j := 0; j < n-1; j++ {
cnorm[j] = bi.Dasum(n-j-1, a[(j+1)*lda+j:], lda)
}
cnorm[n-1] = 0
}
}
// Scale the column norms by tscal if the maximum element in cnorm is greater than bignum.
imax := bi.Idamax(n, cnorm, 1)
tmax := cnorm[imax]
var tscal float64
if tmax <= bignum {
tscal = 1
} else {
tscal = 1 / (smlnum * tmax)
bi.Dscal(n, tscal, cnorm, 1)
}
// Compute a bound on the computed solution vector to see if bi.Dtrsv can be used.
j := bi.Idamax(n, x, 1)
xmax := math.Abs(x[j])
xbnd := xmax
var grow float64
var jfirst, jlast, jinc int
if noTrans {
if upper {
jfirst = n - 1
jlast = 0
jinc = -1
} else {
jfirst = 0
jlast = n - 1
jinc = 1
}
// Compute the growth in A * x = b.
if tscal != 1 {
grow = 0
goto Finish
}
if nonUnit {
grow = 1 / math.Max(xbnd, smlnum)
xbnd = grow
for j := jfirst; j != jlast; j += jinc {
if grow <= smlnum {
goto Finish
}
tjj := math.Abs(a[j*lda+j])
xbnd = math.Min(xbnd, math.Min(1, tjj)*grow)
if tjj+cnorm[j] >= smlnum {
grow *= tjj / (tjj + cnorm[j])
} else {
grow = 0
}
}
grow = xbnd
} else {
grow = math.Min(1, 1/math.Max(xbnd, smlnum))
for j := jfirst; j != jlast; j += jinc {
if grow <= smlnum {
goto Finish
}
grow *= 1 / (1 + cnorm[j])
}
}
} else {
if upper {
jfirst = 0
jlast = n - 1
jinc = 1
} else {
jfirst = n - 1
jlast = 0
jinc = -1
}
if tscal != 1 {
grow = 0
goto Finish
}
if nonUnit {
grow = 1 / (math.Max(xbnd, smlnum))
xbnd = grow
for j := jfirst; j != jlast; j += jinc {
if grow <= smlnum {
goto Finish
}
xj := 1 + cnorm[j]
grow = math.Min(grow, xbnd/xj)
tjj := math.Abs(a[j*lda+j])
if xj > tjj {
xbnd *= tjj / xj
}
}
grow = math.Min(grow, xbnd)
} else {
grow = math.Min(1, 1/math.Max(xbnd, smlnum))
for j := jfirst; j != jlast; j += jinc {
if grow <= smlnum {
goto Finish
}
xj := 1 + cnorm[j]
grow /= xj
}
}
}
Finish:
if grow*tscal > smlnum {
bi.Dtrsv(uplo, trans, diag, n, a, lda, x, 1)
// TODO(btracey): check if this else is everything
} else {
if xmax > bignum {
scale = bignum / xmax
bi.Dscal(n, scale, x, 1)
xmax = bignum
}
if noTrans {
for j := jfirst; j != jlast; j += jinc {
xj := math.Abs(x[j])
var tjjs float64
if nonUnit {
tjjs = a[j*lda+j] * tscal
} else {
tjjs = tscal
if tscal == 1 {
break
}
}
tjj := math.Abs(tjjs)
if tjj > smlnum {
if tjj < 1 {
if xj > tjj*bignum {
rec := 1 / xj
bi.Dscal(n, rec, x, 1)
scale *= rec
xmax *= rec
}
}
x[j] /= tjjs
xj = math.Abs(x[j])
} else if tjj > 0 {
if xj > tjj*bignum {
rec := (tjj * bignum) / xj
if cnorm[j] > 1 {
rec /= cnorm[j]
}
bi.Dscal(n, rec, x, 1)
scale *= rec
xmax *= rec
}
x[j] /= tjjs
xj = math.Abs(x[j])
} else {
for i := 0; i < n; i++ {
x[i] = 0
}
x[j] = 1
xj = 1
scale = 0
xmax = 0
}
if xj > 1 {
rec := 1 / xj
if cnorm[j] > (bignum-xmax)*rec {
rec *= 0.5
bi.Dscal(n, rec, x, 1)
scale *= rec
}
} else if xj*cnorm[j] > bignum-xmax {
bi.Dscal(n, 0.5, x, 1)
scale *= 0.5
}
if upper {
if j > 0 {
bi.Daxpy(j, -x[j]*tscal, a[j:], lda, x, 1)
i := bi.Idamax(j, x, 1)
xmax = math.Abs(x[i])
}
} else {
if j < n-1 {
bi.Daxpy(n-j-1, -x[j]*tscal, a[(j+1)*lda+j:], lda, x[j+1:], 1)
i := j + bi.Idamax(n-j-1, x[j+1:], 1)
xmax = math.Abs(x[i])
}
}
}
} else {
for j := jfirst; j != jlast; j += jinc {
xj := math.Abs(x[j])
uscal := tscal
rec := 1 / math.Max(xmax, 1)
var tjjs float64
if cnorm[j] > (bignum-xj)*rec {
rec *= 0.5
if nonUnit {
tjjs = a[j*lda+j] * tscal
} else {
tjjs = tscal
}
tjj := math.Abs(tjjs)
if tjj > 1 {
rec = math.Min(1, rec*tjj)
uscal /= tjjs
}
if rec < 1 {
bi.Dscal(n, rec, x, 1)
scale *= rec
xmax *= rec
}
}
var sumj float64
if uscal == 1 {
if upper {
sumj = bi.Ddot(j, a[j:], lda, x, 1)
} else if j < n-1 {
sumj = bi.Ddot(n-j-1, a[(j+1)*lda+j:], lda, x[j+1:], 1)
}
} else {
if upper {
for i := 0; i < j; i++ {
sumj += (a[i*lda+j] * uscal) * x[i]
}
} else if j < n {
for i := j + 1; i < n; i++ {
sumj += (a[i*lda+j] * uscal) * x[i]
}
}
}
if uscal == tscal {
x[j] -= sumj
xj := math.Abs(x[j])
var tjjs float64
if nonUnit {
tjjs = a[j*lda+j] * tscal
} else {
tjjs = tscal
if tscal == 1 {
goto Out2
}
}
tjj := math.Abs(tjjs)
if tjj > smlnum {
if tjj < 1 {
if xj > tjj*bignum {
rec = 1 / xj
bi.Dscal(n, rec, x, 1)
scale *= rec
xmax *= rec
}
}
x[j] /= tjjs
} else if tjj > 0 {
if xj > tjj*bignum {
rec = (tjj * bignum) / xj
bi.Dscal(n, rec, x, 1)
scale *= rec
xmax *= rec
}
x[j] /= tjjs
} else {
for i := 0; i < n; i++ {
x[i] = 0
}
x[j] = 1
scale = 0
xmax = 0
}
} else {
x[j] = x[j]/tjjs - sumj
}
Out2:
xmax = math.Max(xmax, math.Abs(x[j]))
}
}
scale /= tscal
}
if tscal != 1 {
bi.Dscal(n, 1/tscal, cnorm, 1)
}
return scale
}

View File

@@ -20,6 +20,7 @@ var _ lapack.Float64 = Implementation{}
// This list is duplicated in lapack/cgo. Keep in sync.
const (
absIncNotOne = "lapack: increment not one or negative one"
badDiag = "lapack: bad diag"
badDirect = "lapack: bad direct"
badIpiv = "lapack: insufficient permutation length"
badLdA = "lapack: index of a out of range"
@@ -74,10 +75,6 @@ func max(a, b int) int {
return b
}
// dlamch is a function in fortran, but since go forces IEEE-754 these are all
// fixed values. Probably a way to get them as constants.
// TODO(btracey): Is there a better way to find the smallest number such that 1+E > 1
var (
// dlamchE is the machine epsilon. For IEEE this is 2^-53.
dlamchE = math.Float64frombits(0x3ca0000000000000)
@@ -89,4 +86,7 @@ var (
// not overflow. The Netlib code for calculating this number is not correct --
// it overflows. Found by trial and error, it is equal to (1/math.MaxFloat64) * (1+ 6*eps)
dlamchS = math.Float64frombits(0x4000000000001)
smlnum = dlamchS / dlamchP
bignum = 1 / smlnum
)