mirror of
https://github.com/gonum/gonum.git
synced 2025-10-16 12:10:37 +08:00
lapack/gonum: add Dgetc2 (#1655)
This commit is contained in:

committed by
GitHub

parent
0acd6516a6
commit
cafcbe481e
117
lapack/gonum/dgetc2.go
Normal file
117
lapack/gonum/dgetc2.go
Normal file
@@ -0,0 +1,117 @@
|
|||||||
|
// Copyright ©2021 The Gonum Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package gonum
|
||||||
|
|
||||||
|
import (
|
||||||
|
"math"
|
||||||
|
|
||||||
|
"gonum.org/v1/gonum/blas/blas64"
|
||||||
|
)
|
||||||
|
|
||||||
|
// Dgetc2 computes an LU factorization with complete pivoting of the
|
||||||
|
// n×n matrix A. The factorization has the form
|
||||||
|
// A = P * L * U * Q,
|
||||||
|
// where P and Q are permutation matrices, L is lower triangular with
|
||||||
|
// unit diagonal elements and U is upper triangular.
|
||||||
|
//
|
||||||
|
// a is modified to the information to construct L and U.
|
||||||
|
// The lower triangle of a contains the matrix L (not including diagonal).
|
||||||
|
// The upper triangle contains the matrix U. The matrices P and Q can
|
||||||
|
// be constructed from ipiv and jpiv, respectively. k is non-negative if U(k, k)
|
||||||
|
// is likely to produce overflow when we try to solve for x in Ax = b.
|
||||||
|
// U is perturbed in this case to avoid the overflow.
|
||||||
|
//
|
||||||
|
// Dgetc2 is an internal routine. It is exported for testing purposes.
|
||||||
|
func (impl Implementation) Dgetc2(n int, a []float64, lda int, ipiv, jpiv []int) (k int) {
|
||||||
|
switch {
|
||||||
|
case n < 0:
|
||||||
|
panic(nLT0)
|
||||||
|
case lda < max(1, n):
|
||||||
|
panic(badLdA)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Negative k indicates U was not perturbed.
|
||||||
|
k = -1
|
||||||
|
// Quick return if possible.
|
||||||
|
if n == 0 {
|
||||||
|
return k
|
||||||
|
}
|
||||||
|
|
||||||
|
switch {
|
||||||
|
case len(a) < (n-1)*lda+n:
|
||||||
|
panic(shortA)
|
||||||
|
case len(ipiv) != n:
|
||||||
|
panic(badLenIpiv)
|
||||||
|
case len(jpiv) != n:
|
||||||
|
panic(badLenJpvt)
|
||||||
|
}
|
||||||
|
|
||||||
|
const (
|
||||||
|
eps = dlamchP
|
||||||
|
smlnum = dlamchS / eps
|
||||||
|
)
|
||||||
|
if n == 1 {
|
||||||
|
ipiv[0], jpiv[0] = 0, 0
|
||||||
|
if math.Abs(a[0]) < smlnum {
|
||||||
|
a[0] = smlnum
|
||||||
|
k = 0
|
||||||
|
}
|
||||||
|
return k
|
||||||
|
}
|
||||||
|
|
||||||
|
// Factorize A using complete pivoting.
|
||||||
|
// Set pivots less than lc to lc.
|
||||||
|
var lc float64
|
||||||
|
var ipv, jpv int
|
||||||
|
bi := blas64.Implementation()
|
||||||
|
for i := 0; i < n-1; i++ {
|
||||||
|
xmax := 0.0
|
||||||
|
for ip := i; ip < n; ip++ {
|
||||||
|
for jp := i; jp < n; jp++ {
|
||||||
|
if math.Abs(a[ip*lda+jp]) >= xmax {
|
||||||
|
xmax = math.Abs(a[ip*lda+jp])
|
||||||
|
ipv = ip
|
||||||
|
jpv = jp
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if i == 0 {
|
||||||
|
lc = math.Max(eps*xmax, smlnum)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Swap rows.
|
||||||
|
if ipv != i {
|
||||||
|
bi.Dswap(n, a[ipv*lda:], 1, a[i*lda:], 1)
|
||||||
|
}
|
||||||
|
ipiv[i] = ipv
|
||||||
|
|
||||||
|
// Swap columns.
|
||||||
|
if jpv != i {
|
||||||
|
bi.Dswap(n, a[jpv:], lda, a[i:], lda)
|
||||||
|
}
|
||||||
|
jpiv[i] = jpv
|
||||||
|
|
||||||
|
// Check for singularity.
|
||||||
|
if math.Abs(a[i*lda+i]) < lc {
|
||||||
|
k = i
|
||||||
|
a[i*lda+i] = lc
|
||||||
|
}
|
||||||
|
|
||||||
|
for j := i + 1; j < n; j++ {
|
||||||
|
a[j*lda+i] /= a[i*lda+i]
|
||||||
|
}
|
||||||
|
bi.Dger(n-i-1, n-i-1, -1, a[(i+1)*lda+i:], lda, a[i*lda+i+1:], 1, a[(i+1)*lda+i+1:], lda)
|
||||||
|
}
|
||||||
|
|
||||||
|
if math.Abs(a[(n-1)*lda+n-1]) < lc {
|
||||||
|
k = n - 1
|
||||||
|
a[(n-1)*lda+(n-1)] = lc
|
||||||
|
}
|
||||||
|
|
||||||
|
// Set last pivots to last index.
|
||||||
|
ipiv[n-1] = n - 1
|
||||||
|
jpiv[n-1] = n - 1
|
||||||
|
return k
|
||||||
|
}
|
@@ -118,6 +118,11 @@ func TestDgesvd(t *testing.T) {
|
|||||||
testlapack.DgesvdTest(t, impl, tol)
|
testlapack.DgesvdTest(t, impl, tol)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestDgetc2(t *testing.T) {
|
||||||
|
t.Parallel()
|
||||||
|
testlapack.Dgetc2Test(t, impl)
|
||||||
|
}
|
||||||
|
|
||||||
func TestDgetri(t *testing.T) {
|
func TestDgetri(t *testing.T) {
|
||||||
t.Parallel()
|
t.Parallel()
|
||||||
testlapack.DgetriTest(t, impl)
|
testlapack.DgetriTest(t, impl)
|
||||||
|
98
lapack/testlapack/dgetc2.go
Normal file
98
lapack/testlapack/dgetc2.go
Normal file
@@ -0,0 +1,98 @@
|
|||||||
|
// Copyright ©2021 The Gonum Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package testlapack
|
||||||
|
|
||||||
|
import (
|
||||||
|
"fmt"
|
||||||
|
"math"
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"golang.org/x/exp/rand"
|
||||||
|
|
||||||
|
"gonum.org/v1/gonum/blas"
|
||||||
|
"gonum.org/v1/gonum/blas/blas64"
|
||||||
|
)
|
||||||
|
|
||||||
|
type Dgetc2er interface {
|
||||||
|
Dgetc2(n int, a []float64, lda int, ipiv, jpiv []int) (k int)
|
||||||
|
}
|
||||||
|
|
||||||
|
func Dgetc2Test(t *testing.T, impl Dgetc2er) {
|
||||||
|
const tol = 1e-12
|
||||||
|
rnd := rand.New(rand.NewSource(1))
|
||||||
|
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 20} {
|
||||||
|
for _, lda := range []int{n, n + 5} {
|
||||||
|
dgetc2Test(t, impl, rnd, n, lda, tol)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func dgetc2Test(t *testing.T, impl Dgetc2er, rnd *rand.Rand, n, lda int, tol float64) {
|
||||||
|
name := fmt.Sprintf("n=%v,lda=%v", n, lda)
|
||||||
|
if lda == 0 {
|
||||||
|
lda = 1
|
||||||
|
}
|
||||||
|
// Generate a random general matrix A.
|
||||||
|
a := randomGeneral(n, n, lda, rnd)
|
||||||
|
// ipiv and jpiv are outputs.
|
||||||
|
ipiv := make([]int, n)
|
||||||
|
jpiv := make([]int, n)
|
||||||
|
for i := 0; i < n; i++ {
|
||||||
|
ipiv[i], jpiv[i] = -1, -1 // Set to non-indices.
|
||||||
|
}
|
||||||
|
// Copy to store output (LU decomposition).
|
||||||
|
lu := cloneGeneral(a)
|
||||||
|
k := impl.Dgetc2(n, lu.Data, lu.Stride, ipiv, jpiv)
|
||||||
|
if k >= 0 {
|
||||||
|
t.Logf("%v: matrix was perturbed at %d", name, k)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Verify all indices are set.
|
||||||
|
for i := 0; i < n; i++ {
|
||||||
|
if ipiv[i] < 0 {
|
||||||
|
t.Errorf("%v: ipiv[%d] is negative", name, i)
|
||||||
|
}
|
||||||
|
if jpiv[i] < 0 {
|
||||||
|
t.Errorf("%v: jpiv[%d] is negative", name, i)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
bi := blas64.Implementation()
|
||||||
|
// Construct L and U triangular matrices from Dgetc2 output.
|
||||||
|
L := zeros(n, n, lda)
|
||||||
|
U := zeros(n, n, lda)
|
||||||
|
for i := 0; i < n; i++ {
|
||||||
|
for j := 0; j < n; j++ {
|
||||||
|
idx := i*lda + j
|
||||||
|
if j >= i { // On upper triangle and setting of L's unit diagonal elements.
|
||||||
|
U.Data[idx] = lu.Data[idx]
|
||||||
|
if j == i {
|
||||||
|
L.Data[idx] = 1.0
|
||||||
|
}
|
||||||
|
} else if i > j { // On diagonal or lower triangle.
|
||||||
|
L.Data[idx] = lu.Data[idx]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
work := zeros(n, n, lda)
|
||||||
|
bi.Dgemm(blas.NoTrans, blas.NoTrans, n, n, n, 1, L.Data, L.Stride, U.Data, U.Stride, 0, work.Data, work.Stride)
|
||||||
|
|
||||||
|
// Apply Permutations P and Q to L*U.
|
||||||
|
for i := n - 1; i >= 0; i-- {
|
||||||
|
ipv, jpv := ipiv[i], jpiv[i]
|
||||||
|
if ipv != i {
|
||||||
|
bi.Dswap(n, work.Data[i*lda:], 1, work.Data[ipv*lda:], 1)
|
||||||
|
}
|
||||||
|
if jpv != i {
|
||||||
|
bi.Dswap(n, work.Data[i:], work.Stride, work.Data[jpv:], work.Stride)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// A should be reconstructed by now.
|
||||||
|
for i := range work.Data {
|
||||||
|
if math.Abs(work.Data[i]-a.Data[i]) > tol {
|
||||||
|
t.Errorf("%v: matrix %d idx not equal after reconstruction. got %g, expected %g", name, i, work.Data[i], a.Data[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
Reference in New Issue
Block a user