lapack/gonum: add Dgetc2 (#1655)

This commit is contained in:
Patricio Whittingslow
2021-06-11 10:31:09 -03:00
committed by GitHub
parent 0acd6516a6
commit cafcbe481e
3 changed files with 220 additions and 0 deletions

117
lapack/gonum/dgetc2.go Normal file
View File

@@ -0,0 +1,117 @@
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas/blas64"
)
// Dgetc2 computes an LU factorization with complete pivoting of the
// n×n matrix A. The factorization has the form
// A = P * L * U * Q,
// where P and Q are permutation matrices, L is lower triangular with
// unit diagonal elements and U is upper triangular.
//
// a is modified to the information to construct L and U.
// The lower triangle of a contains the matrix L (not including diagonal).
// The upper triangle contains the matrix U. The matrices P and Q can
// be constructed from ipiv and jpiv, respectively. k is non-negative if U(k, k)
// is likely to produce overflow when we try to solve for x in Ax = b.
// U is perturbed in this case to avoid the overflow.
//
// Dgetc2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgetc2(n int, a []float64, lda int, ipiv, jpiv []int) (k int) {
switch {
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
}
// Negative k indicates U was not perturbed.
k = -1
// Quick return if possible.
if n == 0 {
return k
}
switch {
case len(a) < (n-1)*lda+n:
panic(shortA)
case len(ipiv) != n:
panic(badLenIpiv)
case len(jpiv) != n:
panic(badLenJpvt)
}
const (
eps = dlamchP
smlnum = dlamchS / eps
)
if n == 1 {
ipiv[0], jpiv[0] = 0, 0
if math.Abs(a[0]) < smlnum {
a[0] = smlnum
k = 0
}
return k
}
// Factorize A using complete pivoting.
// Set pivots less than lc to lc.
var lc float64
var ipv, jpv int
bi := blas64.Implementation()
for i := 0; i < n-1; i++ {
xmax := 0.0
for ip := i; ip < n; ip++ {
for jp := i; jp < n; jp++ {
if math.Abs(a[ip*lda+jp]) >= xmax {
xmax = math.Abs(a[ip*lda+jp])
ipv = ip
jpv = jp
}
}
}
if i == 0 {
lc = math.Max(eps*xmax, smlnum)
}
// Swap rows.
if ipv != i {
bi.Dswap(n, a[ipv*lda:], 1, a[i*lda:], 1)
}
ipiv[i] = ipv
// Swap columns.
if jpv != i {
bi.Dswap(n, a[jpv:], lda, a[i:], lda)
}
jpiv[i] = jpv
// Check for singularity.
if math.Abs(a[i*lda+i]) < lc {
k = i
a[i*lda+i] = lc
}
for j := i + 1; j < n; j++ {
a[j*lda+i] /= a[i*lda+i]
}
bi.Dger(n-i-1, n-i-1, -1, a[(i+1)*lda+i:], lda, a[i*lda+i+1:], 1, a[(i+1)*lda+i+1:], lda)
}
if math.Abs(a[(n-1)*lda+n-1]) < lc {
k = n - 1
a[(n-1)*lda+(n-1)] = lc
}
// Set last pivots to last index.
ipiv[n-1] = n - 1
jpiv[n-1] = n - 1
return k
}

View File

@@ -118,6 +118,11 @@ func TestDgesvd(t *testing.T) {
testlapack.DgesvdTest(t, impl, tol) testlapack.DgesvdTest(t, impl, tol)
} }
func TestDgetc2(t *testing.T) {
t.Parallel()
testlapack.Dgetc2Test(t, impl)
}
func TestDgetri(t *testing.T) { func TestDgetri(t *testing.T) {
t.Parallel() t.Parallel()
testlapack.DgetriTest(t, impl) testlapack.DgetriTest(t, impl)

View File

@@ -0,0 +1,98 @@
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
type Dgetc2er interface {
Dgetc2(n int, a []float64, lda int, ipiv, jpiv []int) (k int)
}
func Dgetc2Test(t *testing.T, impl Dgetc2er) {
const tol = 1e-12
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 20} {
for _, lda := range []int{n, n + 5} {
dgetc2Test(t, impl, rnd, n, lda, tol)
}
}
}
func dgetc2Test(t *testing.T, impl Dgetc2er, rnd *rand.Rand, n, lda int, tol float64) {
name := fmt.Sprintf("n=%v,lda=%v", n, lda)
if lda == 0 {
lda = 1
}
// Generate a random general matrix A.
a := randomGeneral(n, n, lda, rnd)
// ipiv and jpiv are outputs.
ipiv := make([]int, n)
jpiv := make([]int, n)
for i := 0; i < n; i++ {
ipiv[i], jpiv[i] = -1, -1 // Set to non-indices.
}
// Copy to store output (LU decomposition).
lu := cloneGeneral(a)
k := impl.Dgetc2(n, lu.Data, lu.Stride, ipiv, jpiv)
if k >= 0 {
t.Logf("%v: matrix was perturbed at %d", name, k)
}
// Verify all indices are set.
for i := 0; i < n; i++ {
if ipiv[i] < 0 {
t.Errorf("%v: ipiv[%d] is negative", name, i)
}
if jpiv[i] < 0 {
t.Errorf("%v: jpiv[%d] is negative", name, i)
}
}
bi := blas64.Implementation()
// Construct L and U triangular matrices from Dgetc2 output.
L := zeros(n, n, lda)
U := zeros(n, n, lda)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
idx := i*lda + j
if j >= i { // On upper triangle and setting of L's unit diagonal elements.
U.Data[idx] = lu.Data[idx]
if j == i {
L.Data[idx] = 1.0
}
} else if i > j { // On diagonal or lower triangle.
L.Data[idx] = lu.Data[idx]
}
}
}
work := zeros(n, n, lda)
bi.Dgemm(blas.NoTrans, blas.NoTrans, n, n, n, 1, L.Data, L.Stride, U.Data, U.Stride, 0, work.Data, work.Stride)
// Apply Permutations P and Q to L*U.
for i := n - 1; i >= 0; i-- {
ipv, jpv := ipiv[i], jpiv[i]
if ipv != i {
bi.Dswap(n, work.Data[i*lda:], 1, work.Data[ipv*lda:], 1)
}
if jpv != i {
bi.Dswap(n, work.Data[i:], work.Stride, work.Data[jpv:], work.Stride)
}
}
// A should be reconstructed by now.
for i := range work.Data {
if math.Abs(work.Data[i]-a.Data[i]) > tol {
t.Errorf("%v: matrix %d idx not equal after reconstruction. got %g, expected %g", name, i, work.Data[i], a.Data[i])
}
}
}