mirror of
https://github.com/gonum/gonum.git
synced 2025-10-06 07:37:03 +08:00
lapack: imported lapack as a subtree
This commit is contained in:
81
lapack/native/dgecon.go
Normal file
81
lapack/native/dgecon.go
Normal file
@@ -0,0 +1,81 @@
|
||||
// Copyright ©2015 The gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package native
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/gonum/blas"
|
||||
"github.com/gonum/blas/blas64"
|
||||
"github.com/gonum/lapack"
|
||||
)
|
||||
|
||||
// Dgecon estimates the reciprocal of the condition number of the n×n matrix A
|
||||
// given the LU decomposition of the matrix. The condition number computed may
|
||||
// be based on the 1-norm or the ∞-norm.
|
||||
//
|
||||
// The slice a contains the result of the LU decomposition of A as computed by Dgetrf.
|
||||
//
|
||||
// anorm is the corresponding 1-norm or ∞-norm of the original matrix A.
|
||||
//
|
||||
// work is a temporary data slice of length at least 4*n and Dgecon will panic otherwise.
|
||||
//
|
||||
// iwork is a temporary data slice of length at least n and Dgecon will panic otherwise.
|
||||
func (impl Implementation) Dgecon(norm lapack.MatrixNorm, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 {
|
||||
checkMatrix(n, n, a, lda)
|
||||
if norm != lapack.MaxColumnSum && norm != lapack.MaxRowSum {
|
||||
panic(badNorm)
|
||||
}
|
||||
if len(work) < 4*n {
|
||||
panic(badWork)
|
||||
}
|
||||
if len(iwork) < n {
|
||||
panic(badWork)
|
||||
}
|
||||
|
||||
if n == 0 {
|
||||
return 1
|
||||
} else if anorm == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
bi := blas64.Implementation()
|
||||
var rcond, ainvnm float64
|
||||
var kase int
|
||||
var normin bool
|
||||
isave := new([3]int)
|
||||
onenrm := norm == lapack.MaxColumnSum
|
||||
smlnum := dlamchS
|
||||
kase1 := 2
|
||||
if onenrm {
|
||||
kase1 = 1
|
||||
}
|
||||
for {
|
||||
ainvnm, kase = impl.Dlacn2(n, work[n:], work, iwork, ainvnm, kase, isave)
|
||||
if kase == 0 {
|
||||
if ainvnm != 0 {
|
||||
rcond = (1 / ainvnm) / anorm
|
||||
}
|
||||
return rcond
|
||||
}
|
||||
var sl, su float64
|
||||
if kase == kase1 {
|
||||
sl = impl.Dlatrs(blas.Lower, blas.NoTrans, blas.Unit, normin, n, a, lda, work, work[2*n:])
|
||||
su = impl.Dlatrs(blas.Upper, blas.NoTrans, blas.NonUnit, normin, n, a, lda, work, work[3*n:])
|
||||
} else {
|
||||
su = impl.Dlatrs(blas.Upper, blas.Trans, blas.NonUnit, normin, n, a, lda, work, work[3*n:])
|
||||
sl = impl.Dlatrs(blas.Lower, blas.Trans, blas.Unit, normin, n, a, lda, work, work[2*n:])
|
||||
}
|
||||
scale := sl * su
|
||||
normin = true
|
||||
if scale != 1 {
|
||||
ix := bi.Idamax(n, work, 1)
|
||||
if scale == 0 || scale < math.Abs(work[ix])*smlnum {
|
||||
return rcond
|
||||
}
|
||||
impl.Drscl(n, scale, work, 1)
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user