mirror of
https://github.com/gonum/gonum.git
synced 2025-10-16 04:00:48 +08:00
lapack: imported lapack as a subtree
This commit is contained in:
112
lapack/internal/testdata/netlib/dnrm2.f
vendored
Normal file
112
lapack/internal/testdata/netlib/dnrm2.f
vendored
Normal file
@@ -0,0 +1,112 @@
|
||||
*> \brief \b DNRM2
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* INTEGER INCX,N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION X(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DNRM2 returns the euclidean norm of a vector via the function
|
||||
*> name, so that
|
||||
*>
|
||||
*> DNRM2 := sqrt( x'*x )
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2011
|
||||
*
|
||||
*> \ingroup double_blas_level1
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> -- This version written on 25-October-1982.
|
||||
*> Modified on 14-October-1993 to inline the call to DLASSQ.
|
||||
*> Sven Hammarling, Nag Ltd.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
|
||||
*
|
||||
* -- Reference BLAS level1 routine (version 3.4.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2011
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER INCX,N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION X(*)
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE,ZERO
|
||||
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION ABSXI,NORM,SCALE,SSQ
|
||||
INTEGER IX
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS,SQRT
|
||||
* ..
|
||||
IF (N.LT.1 .OR. INCX.LT.1) THEN
|
||||
NORM = ZERO
|
||||
ELSE IF (N.EQ.1) THEN
|
||||
NORM = ABS(X(1))
|
||||
ELSE
|
||||
SCALE = ZERO
|
||||
SSQ = ONE
|
||||
* The following loop is equivalent to this call to the LAPACK
|
||||
* auxiliary routine:
|
||||
* CALL DLASSQ( N, X, INCX, SCALE, SSQ )
|
||||
*
|
||||
DO 10 IX = 1,1 + (N-1)*INCX,INCX
|
||||
IF (X(IX).NE.ZERO) THEN
|
||||
ABSXI = ABS(X(IX))
|
||||
IF (SCALE.LT.ABSXI) THEN
|
||||
SSQ = ONE + SSQ* (SCALE/ABSXI)**2
|
||||
SCALE = ABSXI
|
||||
ELSE
|
||||
SSQ = SSQ + (ABSXI/SCALE)**2
|
||||
END IF
|
||||
END IF
|
||||
10 CONTINUE
|
||||
NORM = SCALE*SQRT(SSQ)
|
||||
END IF
|
||||
*
|
||||
DNRM2 = NORM
|
||||
RETURN
|
||||
*
|
||||
* End of DNRM2.
|
||||
*
|
||||
END
|
Reference in New Issue
Block a user