mirror of
https://github.com/gonum/gonum.git
synced 2025-10-27 01:00:26 +08:00
lapack: imported lapack as a subtree
This commit is contained in:
330
lapack/internal/testdata/netlib/dgemv.f
vendored
Normal file
330
lapack/internal/testdata/netlib/dgemv.f
vendored
Normal file
@@ -0,0 +1,330 @@
|
||||
*> \brief \b DGEMV
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* DOUBLE PRECISION ALPHA,BETA
|
||||
* INTEGER INCX,INCY,LDA,M,N
|
||||
* CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* DOUBLE PRECISION A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DGEMV performs one of the matrix-vector operations
|
||||
*>
|
||||
*> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
|
||||
*>
|
||||
*> where alpha and beta are scalars, x and y are vectors and A is an
|
||||
*> m by n matrix.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] TRANS
|
||||
*> \verbatim
|
||||
*> TRANS is CHARACTER*1
|
||||
*> On entry, TRANS specifies the operation to be performed as
|
||||
*> follows:
|
||||
*>
|
||||
*> TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*>
|
||||
*> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
|
||||
*>
|
||||
*> TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] M
|
||||
*> \verbatim
|
||||
*> M is INTEGER
|
||||
*> On entry, M specifies the number of rows of the matrix A.
|
||||
*> M must be at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> On entry, N specifies the number of columns of the matrix A.
|
||||
*> N must be at least zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] ALPHA
|
||||
*> \verbatim
|
||||
*> ALPHA is DOUBLE PRECISION.
|
||||
*> On entry, ALPHA specifies the scalar alpha.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
*> Before entry, the leading m by n part of the array A must
|
||||
*> contain the matrix of coefficients.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> On entry, LDA specifies the first dimension of A as declared
|
||||
*> in the calling (sub) program. LDA must be at least
|
||||
*> max( 1, m ).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] X
|
||||
*> \verbatim
|
||||
*> X is DOUBLE PRECISION array of DIMENSION at least
|
||||
*> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
*> and at least
|
||||
*> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
*> Before entry, the incremented array X must contain the
|
||||
*> vector x.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCX
|
||||
*> \verbatim
|
||||
*> INCX is INTEGER
|
||||
*> On entry, INCX specifies the increment for the elements of
|
||||
*> X. INCX must not be zero.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] BETA
|
||||
*> \verbatim
|
||||
*> BETA is DOUBLE PRECISION.
|
||||
*> On entry, BETA specifies the scalar beta. When BETA is
|
||||
*> supplied as zero then Y need not be set on input.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] Y
|
||||
*> \verbatim
|
||||
*> Y is DOUBLE PRECISION array of DIMENSION at least
|
||||
*> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
*> and at least
|
||||
*> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
*> Before entry with BETA non-zero, the incremented array Y
|
||||
*> must contain the vector y. On exit, Y is overwritten by the
|
||||
*> updated vector y.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] INCY
|
||||
*> \verbatim
|
||||
*> INCY is INTEGER
|
||||
*> On entry, INCY specifies the increment for the elements of
|
||||
*> Y. INCY must not be zero.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date November 2015
|
||||
*
|
||||
*> \ingroup double_blas_level2
|
||||
*
|
||||
*> \par Further Details:
|
||||
* =====================
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Level 2 Blas routine.
|
||||
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
|
||||
*>
|
||||
*> -- Written on 22-October-1986.
|
||||
*> Jack Dongarra, Argonne National Lab.
|
||||
*> Jeremy Du Croz, Nag Central Office.
|
||||
*> Sven Hammarling, Nag Central Office.
|
||||
*> Richard Hanson, Sandia National Labs.
|
||||
*> \endverbatim
|
||||
*>
|
||||
* =====================================================================
|
||||
SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
*
|
||||
* -- Reference BLAS level2 routine (version 3.6.0) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* November 2015
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION ALPHA,BETA
|
||||
INTEGER INCX,INCY,LDA,M,N
|
||||
CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE,ZERO
|
||||
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION TEMP
|
||||
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
||||
+ .NOT.LSAME(TRANS,'C')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (M.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 3
|
||||
ELSE IF (LDA.LT.MAX(1,M)) THEN
|
||||
INFO = 6
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 8
|
||||
ELSE IF (INCY.EQ.0) THEN
|
||||
INFO = 11
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('DGEMV ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
||||
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
||||
*
|
||||
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
||||
* up the start points in X and Y.
|
||||
*
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
LENX = N
|
||||
LENY = M
|
||||
ELSE
|
||||
LENX = M
|
||||
LENY = N
|
||||
END IF
|
||||
IF (INCX.GT.0) THEN
|
||||
KX = 1
|
||||
ELSE
|
||||
KX = 1 - (LENX-1)*INCX
|
||||
END IF
|
||||
IF (INCY.GT.0) THEN
|
||||
KY = 1
|
||||
ELSE
|
||||
KY = 1 - (LENY-1)*INCY
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of A are
|
||||
* accessed sequentially with one pass through A.
|
||||
*
|
||||
* First form y := beta*y.
|
||||
*
|
||||
IF (BETA.NE.ONE) THEN
|
||||
IF (INCY.EQ.1) THEN
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 10 I = 1,LENY
|
||||
Y(I) = ZERO
|
||||
10 CONTINUE
|
||||
ELSE
|
||||
DO 20 I = 1,LENY
|
||||
Y(I) = BETA*Y(I)
|
||||
20 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IY = KY
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 30 I = 1,LENY
|
||||
Y(IY) = ZERO
|
||||
IY = IY + INCY
|
||||
30 CONTINUE
|
||||
ELSE
|
||||
DO 40 I = 1,LENY
|
||||
Y(IY) = BETA*Y(IY)
|
||||
IY = IY + INCY
|
||||
40 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
IF (ALPHA.EQ.ZERO) RETURN
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
*
|
||||
* Form y := alpha*A*x + y.
|
||||
*
|
||||
JX = KX
|
||||
IF (INCY.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
TEMP = ALPHA*X(JX)
|
||||
DO 50 I = 1,M
|
||||
Y(I) = Y(I) + TEMP*A(I,J)
|
||||
50 CONTINUE
|
||||
JX = JX + INCX
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
DO 80 J = 1,N
|
||||
TEMP = ALPHA*X(JX)
|
||||
IY = KY
|
||||
DO 70 I = 1,M
|
||||
Y(IY) = Y(IY) + TEMP*A(I,J)
|
||||
IY = IY + INCY
|
||||
70 CONTINUE
|
||||
JX = JX + INCX
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form y := alpha*A**T*x + y.
|
||||
*
|
||||
JY = KY
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 100 J = 1,N
|
||||
TEMP = ZERO
|
||||
DO 90 I = 1,M
|
||||
TEMP = TEMP + A(I,J)*X(I)
|
||||
90 CONTINUE
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
100 CONTINUE
|
||||
ELSE
|
||||
DO 120 J = 1,N
|
||||
TEMP = ZERO
|
||||
IX = KX
|
||||
DO 110 I = 1,M
|
||||
TEMP = TEMP + A(I,J)*X(IX)
|
||||
IX = IX + INCX
|
||||
110 CONTINUE
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
120 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of DGEMV .
|
||||
*
|
||||
END
|
||||
Reference in New Issue
Block a user