mirror of
https://github.com/gonum/gonum.git
synced 2025-10-21 14:19:35 +08:00
Add Dgebrd, Dgebd2, and Dlabrd and tests
This commit is contained in:
@@ -6,6 +6,8 @@ package testlapack
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"testing"
|
||||
|
||||
"github.com/gonum/blas"
|
||||
"github.com/gonum/blas/blas64"
|
||||
@@ -26,6 +28,15 @@ func min(a, b int) int {
|
||||
return b
|
||||
}
|
||||
|
||||
// nanSlice allocates a new slice of length n filled with NaN.
|
||||
func nanSlice(n int) []float64 {
|
||||
s := make([]float64, n)
|
||||
for i := range s {
|
||||
s[i] = math.NaN()
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// extractVMat collects the single reflectors from a into a matrix.
|
||||
func extractVMat(m, n int, a []float64, lda int, direct lapack.Direct, store lapack.StoreV) blas64.General {
|
||||
k := min(m, n)
|
||||
@@ -299,6 +310,222 @@ func constructQK(kind string, m, n, k int, a []float64, lda int, tau []float64)
|
||||
return q
|
||||
}
|
||||
|
||||
// checkBidiagonal checks the bidiagonal decomposition from dlabrd and dgebd2.
|
||||
// The input to this function is the answer returned from the routines, stored
|
||||
// in a, d, e, tauP, and tauQ. The data of original A matrix (before
|
||||
// decomposition) is input in aCopy.
|
||||
//
|
||||
// checkBidiagonal constructs the V and U matrices, and from them constructs Q
|
||||
// and P. Using these constructions, it checks that Q^T * A * P and checks that
|
||||
// the result is bidiagonal.
|
||||
func checkBidiagonal(t *testing.T, m, n, nb int, a []float64, lda int, d, e, tauP, tauQ, aCopy []float64) {
|
||||
// Check the answer.
|
||||
// Construct V.and U
|
||||
ldv := nb
|
||||
v := blas64.General{
|
||||
Rows: m,
|
||||
Cols: nb,
|
||||
Stride: ldv,
|
||||
Data: make([]float64, m*ldv),
|
||||
}
|
||||
if m >= n {
|
||||
for i := 0; i < m; i++ {
|
||||
for j := 0; j <= min(nb-1, i); j++ {
|
||||
if i == j {
|
||||
v.Data[i*ldv+j] = 1
|
||||
continue
|
||||
}
|
||||
v.Data[i*ldv+j] = a[i*lda+j]
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for i := 1; i < m; i++ {
|
||||
for j := 0; j <= min(nb-1, i-1); j++ {
|
||||
if i-1 == j {
|
||||
v.Data[i*ldv+j] = 1
|
||||
continue
|
||||
}
|
||||
v.Data[i*ldv+j] = a[i*lda+j]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ldu := n
|
||||
u := blas64.General{
|
||||
Rows: nb,
|
||||
Cols: n,
|
||||
Stride: ldu,
|
||||
Data: make([]float64, nb*ldu),
|
||||
}
|
||||
if m < n {
|
||||
for i := 0; i < nb; i++ {
|
||||
for j := i; j < n; j++ {
|
||||
if i == j {
|
||||
u.Data[i*ldu+j] = 1
|
||||
continue
|
||||
}
|
||||
u.Data[i*ldu+j] = a[i*lda+j]
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for i := 0; i < nb; i++ {
|
||||
for j := i + 1; j < n; j++ {
|
||||
if j-1 == i {
|
||||
u.Data[i*ldu+j] = 1
|
||||
continue
|
||||
}
|
||||
u.Data[i*ldu+j] = a[i*lda+j]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check the reconstruction Q^T * A * P
|
||||
qMat := blas64.General{
|
||||
Rows: m,
|
||||
Cols: m,
|
||||
Stride: m,
|
||||
Data: make([]float64, m*m),
|
||||
}
|
||||
hMat := blas64.General{
|
||||
Rows: m,
|
||||
Cols: m,
|
||||
Stride: m,
|
||||
Data: make([]float64, m*m),
|
||||
}
|
||||
pMat := blas64.General{
|
||||
Rows: n,
|
||||
Cols: n,
|
||||
Stride: n,
|
||||
Data: make([]float64, n*n),
|
||||
}
|
||||
gMat := blas64.General{
|
||||
Rows: n,
|
||||
Cols: n,
|
||||
Stride: n,
|
||||
Data: make([]float64, n*n),
|
||||
}
|
||||
// set Q and P to I
|
||||
for i := 0; i < m; i++ {
|
||||
qMat.Data[i*qMat.Stride+i] = 1
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
pMat.Data[i*pMat.Stride+i] = 1
|
||||
}
|
||||
|
||||
for i := 0; i < nb; i++ {
|
||||
qCopy := blas64.General{Rows: qMat.Rows, Cols: qMat.Cols, Stride: qMat.Stride, Data: make([]float64, len(qMat.Data))}
|
||||
copy(qCopy.Data, qMat.Data)
|
||||
pCopy := blas64.General{Rows: pMat.Rows, Cols: pMat.Cols, Stride: pMat.Stride, Data: make([]float64, len(pMat.Data))}
|
||||
copy(pCopy.Data, pMat.Data)
|
||||
|
||||
// Set g and h to I
|
||||
for i := 0; i < m; i++ {
|
||||
for j := 0; j < m; j++ {
|
||||
if i == j {
|
||||
hMat.Data[i*m+j] = 1
|
||||
} else {
|
||||
hMat.Data[i*m+j] = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
for j := 0; j < n; j++ {
|
||||
if i == j {
|
||||
gMat.Data[i*n+j] = 1
|
||||
} else {
|
||||
gMat.Data[i*n+j] = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
// H -= tauQ[i] * v[i] * v[i]^t
|
||||
vi := blas64.Vector{
|
||||
Inc: v.Stride,
|
||||
Data: v.Data[i:],
|
||||
}
|
||||
blas64.Ger(-tauQ[i], vi, vi, hMat)
|
||||
// G -= tauP[i] * u[i] * u[i]^T
|
||||
ui := blas64.Vector{
|
||||
Inc: 1,
|
||||
Data: u.Data[i*u.Stride:],
|
||||
}
|
||||
blas64.Ger(-tauP[i], ui, ui, gMat)
|
||||
|
||||
// Q = Q * G[1]
|
||||
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qCopy, hMat, 0, qMat)
|
||||
// P = P * G[i]
|
||||
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, pCopy, gMat, 0, pMat)
|
||||
}
|
||||
|
||||
// Compute Q^T * A * P
|
||||
aMat := blas64.General{
|
||||
Rows: m,
|
||||
Cols: n,
|
||||
Stride: lda,
|
||||
Data: make([]float64, len(aCopy)),
|
||||
}
|
||||
copy(aMat.Data, aCopy)
|
||||
|
||||
tmp1 := blas64.General{
|
||||
Rows: m,
|
||||
Cols: n,
|
||||
Stride: n,
|
||||
Data: make([]float64, m*n),
|
||||
}
|
||||
blas64.Gemm(blas.Trans, blas.NoTrans, 1, qMat, aMat, 0, tmp1)
|
||||
tmp2 := blas64.General{
|
||||
Rows: m,
|
||||
Cols: n,
|
||||
Stride: n,
|
||||
Data: make([]float64, m*n),
|
||||
}
|
||||
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, tmp1, pMat, 0, tmp2)
|
||||
|
||||
// Check that the first nb rows and cols of tm2 are upper bidiagonal
|
||||
// if m >= n, and lower bidiagonal otherwise.
|
||||
correctDiag := true
|
||||
matchD := true
|
||||
matchE := true
|
||||
for i := 0; i < m; i++ {
|
||||
for j := 0; j < n; j++ {
|
||||
if i >= nb && j >= nb {
|
||||
continue
|
||||
}
|
||||
v := tmp2.Data[i*tmp2.Stride+j]
|
||||
if i == j {
|
||||
if math.Abs(d[i]-v) > 1e-12 {
|
||||
matchD = false
|
||||
}
|
||||
continue
|
||||
}
|
||||
if m >= n && i == j-1 {
|
||||
if math.Abs(e[j-1]-v) > 1e-12 {
|
||||
matchE = false
|
||||
}
|
||||
continue
|
||||
}
|
||||
if m < n && i-1 == j {
|
||||
if math.Abs(e[i-1]-v) > 1e-12 {
|
||||
matchE = false
|
||||
}
|
||||
continue
|
||||
}
|
||||
if math.Abs(v) > 1e-12 {
|
||||
correctDiag = false
|
||||
}
|
||||
}
|
||||
}
|
||||
if !correctDiag {
|
||||
t.Errorf("Updated A not bi-diagonal")
|
||||
}
|
||||
if !matchD {
|
||||
fmt.Println("d = ", d)
|
||||
t.Errorf("D Mismatch")
|
||||
}
|
||||
if !matchE {
|
||||
t.Errorf("E mismatch")
|
||||
}
|
||||
}
|
||||
|
||||
// printRowise prints the matrix with one row per line. This is useful for debugging.
|
||||
// If beyond is true, it prints beyond the final column to lda. If false, only
|
||||
// the columns are printed.
|
||||
|
Reference in New Issue
Block a user