Add Dgebrd, Dgebd2, and Dlabrd and tests

This commit is contained in:
btracey
2015-10-28 00:24:32 -06:00
parent d6fe31a937
commit bd71f87f5f
57 changed files with 17917 additions and 44 deletions

140
native/dgebrd.go Normal file
View File

@@ -0,0 +1,140 @@
// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
)
// Dgebrd reduces a general m×n matrix A to upper or lower bidiagonal form B by
// an orthogonal transformation:
// Q^T * A * P = B.
// The diagonal elements of B are stored in d and the off diagonal elements stored
// in e. These are additionally stored along the diagonal of A and the off-diagonal
// of A. If m >= n B is an upper-bidiagonal matrix, and if m < n B is a
// lower-bidiagonal matrix.
//
// The remaining elements of A store the data needed to construct Q and P.
// The matrices Q and P are products of elementary reflectors
// Q = H_1 * H_2 * ... * H_nb
// P = G_1 * G_2 * ... * G_nb
// where
// H_i = I - tauQ[i] * v_i * v_i^T
// G_i = I - tauP[i] * u_i * u_i^T
//
// As an example, on exit the entries of A when m = 6, and n = 5
// ( d e u1 u1 u1 )
// ( v1 d e u2 u2 )
// ( v1 v2 d e u3 )
// ( v1 v2 v3 d e )
// ( v1 v2 v3 v4 d )
// ( v1 v2 v3 v4 v5 )
// and when m = 5, n = 6
// ( d u1 u1 u1 u1 u1 )
// ( e d u2 u2 u2 u2 )
// ( v1 e d u3 u3 u3 )
// ( v1 v2 e d u4 u4 )
// ( v1 v2 v3 e d u5 )
//
// d, tauQ, and tauP must all have length at least min(m,n), and e must have
// length min(m,n) - 1.
//
// Work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= max(m,n) and this function will panic otherwise.
// Dgebrd is blocked decomposition, but the block size is limited
// by the temporary space available. If lwork == -1, instead of performing Dgebrd,
// the optimal work length will be stored into work[0].
func (impl Implementation) Dgebrd(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64, lwork int) {
checkMatrix(m, n, a, lda)
minmn := min(m, n)
if len(d) < minmn {
panic(badD)
}
if len(e) < minmn-1 {
panic(badE)
}
if len(tauQ) < minmn {
panic(badTauQ)
}
if len(tauP) < minmn {
panic(badTauP)
}
// Calculate optimal work.
nb := impl.Ilaenv(1, "DGEBRD", " ", m, n, -1, -1)
if lwork == -1 {
lworkOpt := (m + n) * nb
work[0] = float64(lworkOpt)
return
}
ws := max(m, n)
if lwork < ws {
panic(badWork)
}
if len(work) < lwork {
panic(badWork)
}
var nx int
if nb > 1 && nb < minmn {
nx = max(nb, impl.Ilaenv(3, "DGEBRD", " ", m, n, -1, -1))
if nx < minmn {
ws = (m + n) * nb
if lwork < ws {
nbmin := impl.Ilaenv(2, "DGEBRD", " ", m, n, -1, -1)
if lwork >= (m+n)*nbmin {
nb = lwork / (m + n)
} else {
nb = 1
nx = minmn
}
}
}
} else {
nx = minmn
}
bi := blas64.Implementation()
ldworkx := nb
ldworky := nb
var i int
// Netlib lapack has minmn - nx, but this makes the last nx rows (which by
// default is large) be unblocked. As written here, the blocking is more
// consistent.
for i = 0; i < minmn-nb; i += nb {
// Reduce rows and columns i:i+nb to bidiagonal form and return
// the matrices X and Y which are needed to update the unreduced
// part of the matrix.
// X is stored in the first m rows of work, y in the next rows.
x := work[:m*ldworkx]
y := work[m*ldworkx:]
impl.Dlabrd(m-i, n-i, nb, a[i*lda+i:], lda,
d[i:], e[i:], tauQ[i:], tauP[i:],
x, ldworkx, y, ldworky)
// Update the trailing submatrix A[i+nb:m,i+nb:n], using an update
// of the form A := A - V*Y**T - X*U**T
bi.Dgemm(blas.NoTrans, blas.Trans, m-i-nb, n-i-nb, nb,
-1, a[(i+nb)*lda+i:], lda, y[nb*ldworky:], ldworky,
1, a[(i+nb)*lda+i+nb:], lda)
bi.Dgemm(blas.NoTrans, blas.NoTrans, m-i-nb, n-i-nb, nb,
-1, x[nb*ldworkx:], ldworkx, a[i*lda+i+nb:], lda,
1, a[(i+nb)*lda+i+nb:], lda)
// Copy diagonal and off-diagonal elements of B back into A.
if m >= n {
for j := i; j < i+nb; j++ {
a[j*lda+j] = d[j]
a[j*lda+j+1] = e[j]
}
} else {
for j := i; j < i+nb; j++ {
a[j*lda+j] = d[j]
a[(j+1)*lda+j] = e[j]
}
}
}
// Use unblocked code to reduce the remainder of the matrix.
impl.Dgebd2(m-i, n-i, a[i*lda+i:], lda, d[i:], e[i:], tauQ[i:], tauP[i:], work)
}