mirror of
https://github.com/gonum/gonum.git
synced 2025-10-28 17:31:56 +08:00
Change CovarianceMatrix and CorrelationMatrix to use *SymDense instead of *Dense
This commit is contained in:
@@ -13,26 +13,23 @@ import (
|
||||
|
||||
// CovarianceMatrix calculates a covariance matrix (also known as a
|
||||
// variance-covariance matrix) from a matrix of data, using a two-pass
|
||||
// algorithm. The matrix returned will be symmetric and square.
|
||||
// algorithm.
|
||||
//
|
||||
// The weights wts should have the length equal to the number of rows in
|
||||
// input data matrix x. If c is nil, then a new matrix with appropriate size will
|
||||
// be constructed. If c is not nil, it should be a square matrix with the same
|
||||
// number of columns as the input data matrix x, and it will be used as the receiver
|
||||
// for the covariance data. Weights cannot be negative.
|
||||
func CovarianceMatrix(cov *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.Dense {
|
||||
// The weights must have length equal to the number of rows in
|
||||
// input data matrix x. If cov is nil, then a new matrix with appropriate size will
|
||||
// be constructed. If cov is not nil, it should have the same number of columns as the
|
||||
// input data matrix x, and it will be used as the destination for the covariance
|
||||
// data. Weights must not be negative.
|
||||
func CovarianceMatrix(cov *mat64.SymDense, x mat64.Matrix, weights []float64) *mat64.SymDense {
|
||||
// This is the matrix version of the two-pass algorithm. It doesn't use the
|
||||
// additional floating point error correction that the Covariance function uses
|
||||
// to reduce the impact of rounding during centering.
|
||||
|
||||
// TODO(jonlawlor): indicate that the resulting matrix is symmetric, and change
|
||||
// the returned type from a *mat.Dense to a *mat.Symmetric.
|
||||
|
||||
r, c := x.Dims()
|
||||
|
||||
if cov == nil {
|
||||
cov = mat64.NewDense(c, c, nil)
|
||||
} else if covr, covc := cov.Dims(); covr != covc || covc != c {
|
||||
cov = mat64.NewSymDense(c, nil)
|
||||
} else if n := cov.Symmetric(); n != c {
|
||||
panic(mat64.ErrShape)
|
||||
}
|
||||
|
||||
@@ -41,27 +38,27 @@ func CovarianceMatrix(cov *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.De
|
||||
// Subtract the mean of each of the columns.
|
||||
for i := 0; i < c; i++ {
|
||||
v := xt.RawRowView(i)
|
||||
// This will panic with ErrShape if len(wts) != len(v), so
|
||||
// This will panic with ErrShape if len(weights) != len(v), so
|
||||
// we don't have to check the size later.
|
||||
mean := Mean(v, wts)
|
||||
mean := Mean(v, weights)
|
||||
floats.AddConst(-mean, v)
|
||||
}
|
||||
|
||||
var n float64
|
||||
if wts == nil {
|
||||
if weights == nil {
|
||||
|
||||
n = float64(r)
|
||||
|
||||
cov.Mul(&xt, (&xt).T())
|
||||
cov.SymOuterK(&xt)
|
||||
|
||||
// Scale by the sample size.
|
||||
cov.Scale(1/(n-1), cov)
|
||||
cov.ScaleSym(1/(n-1), cov)
|
||||
return cov
|
||||
}
|
||||
|
||||
// Multiply by the sqrt of the weights, so that multiplication is symmetric.
|
||||
sqrtwts := make([]float64, r)
|
||||
for i, w := range wts {
|
||||
for i, w := range weights {
|
||||
if w < 0 {
|
||||
panic("stat: negative covariance matrix weights")
|
||||
}
|
||||
@@ -74,54 +71,43 @@ func CovarianceMatrix(cov *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.De
|
||||
}
|
||||
|
||||
// Calculate the normalization factor.
|
||||
n = floats.Sum(wts)
|
||||
cov.Mul(&xt, (&xt).T())
|
||||
n = floats.Sum(weights)
|
||||
cov.SymOuterK(&xt)
|
||||
|
||||
// Scale by the sample size.
|
||||
cov.Scale(1/(n-1), cov)
|
||||
cov.ScaleSym(1/(n-1), cov)
|
||||
return cov
|
||||
}
|
||||
|
||||
// CorrelationMatrix calculates a correlation matrix from a matrix of data,
|
||||
// using a two-pass algorithm. The matrix returned will be symmetric and square.
|
||||
// CorrelationMatrix calculates a correlation matrix from a matrix of data
|
||||
// using a two-pass algorithm.
|
||||
//
|
||||
// The weights wts should have the length equal to the number of rows in
|
||||
// input data matrix x. If c is nil, then a new matrix with appropriate size will
|
||||
// be constructed. If c is not nil, it should be a square matrix with the same
|
||||
// number of columns as the input data matrix x, and it will be used as the receiver
|
||||
// for the correlation data. Weights cannot be negative.
|
||||
func CorrelationMatrix(c *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.Dense {
|
||||
|
||||
// TODO(jonlawlor): indicate that the resulting matrix is symmetric, and change
|
||||
// the returned type from a *mat.Dense to a *mat.Symmetric.
|
||||
|
||||
// This will panic if the sizes don't match, or if wts is the wrong size.
|
||||
c = CovarianceMatrix(c, x, wts)
|
||||
covToCorr(c)
|
||||
return c
|
||||
// The weights must have length equal to the number of rows in
|
||||
// input data matrix x. If corr is nil, then a new matrix with appropriate size will
|
||||
// be constructed. If corr is not nil, it should have the same number of columns
|
||||
// as the input data matrix x, and it will be used as the destination for the
|
||||
// correlation data. Weights must not be negative.
|
||||
func CorrelationMatrix(corr *mat64.SymDense, x mat64.Matrix, weights []float64) *mat64.SymDense {
|
||||
// This will panic if the sizes don't match, or if weights is the wrong size.
|
||||
corr = CovarianceMatrix(corr, x, weights)
|
||||
covToCorr(corr)
|
||||
return corr
|
||||
}
|
||||
|
||||
// covToCorr converts a covariance matrix to a correlation matrix.
|
||||
func covToCorr(c *mat64.Dense) {
|
||||
|
||||
// TODO(jonlawlor): use a *mat64.Symmetric as input.
|
||||
|
||||
r, _ := c.Dims()
|
||||
func covToCorr(c *mat64.SymDense) {
|
||||
r := c.Symmetric()
|
||||
|
||||
s := make([]float64, r)
|
||||
for i := 0; i < r; i++ {
|
||||
s[i] = 1 / math.Sqrt(c.At(i, i))
|
||||
}
|
||||
for i, sx := range s {
|
||||
row := c.RawRowView(i)
|
||||
for j, sy := range s {
|
||||
if i == j {
|
||||
// Ensure that the diagonal has exactly ones.
|
||||
row[j] = 1
|
||||
continue
|
||||
}
|
||||
row[j] *= sx
|
||||
row[j] *= sy
|
||||
// Ensure that the diagonal has exactly ones.
|
||||
c.SetSym(i, i, 1)
|
||||
for j := i + 1; j < r; j++ {
|
||||
v := c.At(i, j)
|
||||
c.SetSym(i, j, v*sx*s[j])
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -130,26 +116,18 @@ func covToCorr(c *mat64.Dense) {
|
||||
// The input sigma should be vector of standard deviations corresponding
|
||||
// to the covariance. It will panic if len(sigma) is not equal to the
|
||||
// number of rows in the correlation matrix.
|
||||
func corrToCov(c *mat64.Dense, sigma []float64) {
|
||||
|
||||
// TODO(jonlawlor): use a *mat64.Symmetric as input.
|
||||
|
||||
func corrToCov(c *mat64.SymDense, sigma []float64) {
|
||||
r, _ := c.Dims()
|
||||
|
||||
if r != len(sigma) {
|
||||
panic(mat64.ErrShape)
|
||||
}
|
||||
|
||||
for i, sx := range sigma {
|
||||
row := c.RawRowView(i)
|
||||
for j, sy := range sigma {
|
||||
if i == j {
|
||||
// Ensure that the diagonal has exactly sigma squared.
|
||||
row[j] = sx * sx
|
||||
continue
|
||||
}
|
||||
row[j] *= sx
|
||||
row[j] *= sy
|
||||
// Ensure that the diagonal has exactly sigma squared.
|
||||
c.SetSym(i, i, sx*sx)
|
||||
for j := i + 1; j < r; j++ {
|
||||
v := c.At(i, j)
|
||||
c.SetSym(i, j, v*sx*sigma[j])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user