lapack/gonum: add Dptcon

This commit is contained in:
Vladimir Chalupecky
2023-11-25 09:36:39 +01:00
committed by Vladimír Chalupecký
parent 55edfc1d26
commit b27ae13fdd
3 changed files with 185 additions and 0 deletions

99
lapack/gonum/dptcon.go Normal file
View File

@@ -0,0 +1,99 @@
// Copyright ©2023 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas/blas64"
)
// Dptcon computes and returns the reciprocal of the condition number (in the
// 1-norm) of a symmetric positive definite tridiagonal matrix A using the
// factorization A = L*D*Lᵀ or A = Uᵀ*D*U computed by Dpttrf.
//
// The reciprocal of the condition number is computed as
//
// rcond = 1 / (anorm * ‖A⁻¹‖)
//
// and ‖A⁻¹‖ is computed by a direct method.
//
// d and e contain, respectively, the n diagonal elements of the diagonal matrix
// D and the (n-1) off-diagonal elements of the unit bidiagonal factor U or L
// from the factorization of A, as computed by Dpttrf.
//
// anorm is the 1-norm of the original matrix A.
//
// work must have length n, otherwise Dptcon will panic.
func (impl Implementation) Dptcon(n int, d, e []float64, anorm float64, work []float64) (rcond float64) {
switch {
case n < 0:
panic(nLT0)
case anorm < 0:
panic(badNorm)
}
// Quick return if possible.
if n == 0 {
return 1
}
switch {
case len(d) < n:
panic(shortD)
case len(e) < n-1:
panic(shortE)
case len(work) < n:
panic(shortWork)
}
// Quick return if possible.
switch {
case anorm == 0:
return 0
case math.IsNaN(anorm):
// Propagate NaN.
return anorm
case math.IsInf(anorm, 1):
return 0
}
// Check that d[0:n] is positive.
for _, di := range d[:n] {
if di <= 0 {
return 0
}
}
// Solve M(A) * x = e, where M(A) = (m[i,j]) is given by
//
// m[i,j] = abs(A[i,j]), i == j,
// m[i,j] = -abs(A[i,j]), i != j,
//
// and e = [1,1,...,1]ᵀ. Note M(A) = M(L)*D*M(L)ᵀ.
// Solve M(L) * b = e.
work[0] = 1
for i := 1; i < n; i++ {
work[i] = 1 + work[i-1]*math.Abs(e[i-1])
}
// Solve D * M(L)ᵀ * x = b.
work[n-1] /= d[n-1]
for i := n - 2; i >= 0; i-- {
work[i] = work[i]/d[i] + work[i+1]*math.Abs(e[i])
}
// Compute ainvnm = max(x[i]), 0<=i<n.
bi := blas64.Implementation()
ix := bi.Idamax(n, work, 1)
ainvnm := math.Abs(work[ix])
if ainvnm == 0 {
return 0
}
// Compute the reciprocal condition number.
return 1 / ainvnm / anorm
}

View File

@@ -593,6 +593,11 @@ func TestDptsv(t *testing.T) {
testlapack.DptsvTest(t, impl)
}
func TestDptcon(t *testing.T) {
t.Parallel()
testlapack.DptconTest(t, impl)
}
func TestDrscl(t *testing.T) {
t.Parallel()
testlapack.DrsclTest(t, impl)

View File

@@ -0,0 +1,81 @@
// Copyright ©2023 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
)
type Dptconer interface {
Dptcon(n int, d, e []float64, anorm float64, work []float64) (rcond float64)
Dpttrf(n int, d, e []float64) (ok bool)
Dpttrs(n, nrhs int, d, e []float64, b []float64, ldb int)
}
func DptconTest(t *testing.T, impl Dptconer) {
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 20, 50, 51, 52, 53, 54, 100} {
dptconTest(t, impl, rnd, n)
}
}
func dptconTest(t *testing.T, impl Dptconer, rnd *rand.Rand, n int) {
const tol = 1e-15
name := fmt.Sprintf("n=%v", n)
// Generate a random diagonally dominant symmetric tridiagonal matrix A.
d, e := newRandomSymTridiag(n, rnd)
aNorm := dlanst(lapack.MaxColumnSum, n, d, e)
// Compute the Cholesky factorization of A.
ok := impl.Dpttrf(n, d, e)
if !ok {
t.Errorf("%v: bad test matrix, Dpttrf failed", name)
return
}
// Compute the reciprocal of the condition number of A.
dCopy := make([]float64, len(d))
copy(dCopy, d)
eCopy := make([]float64, len(e))
copy(eCopy, e)
work := make([]float64, 3*n)
rcondGot := impl.Dptcon(n, d, e, aNorm, work)
// Check that Dptcon didn't modify d and e.
if !floats.Equal(d, dCopy) {
t.Errorf("%v: unexpected modification of d", name)
}
if !floats.Equal(e, eCopy) {
t.Errorf("%v: unexpected modification of e", name)
}
// Compute the norm of A⁻¹.
aInv, lda := make([]float64, n*n), max(1, n)
for i := 0; i < n; i++ {
aInv[i*lda+i] = 1
}
impl.Dpttrs(n, n, d, e, aInv, lda)
aInvNorm := dlange(lapack.MaxColumnSum, n, n, aInv, lda)
rcondWant := 1.0
if aNorm > 0 && aInvNorm > 0 {
rcondWant = 1 / aNorm / aInvNorm
}
diff := math.Abs(rcondGot - rcondWant)
if diff > tol {
t.Errorf("%v: unexpected value of rcond. got=%v, want=%v (diff=%v)", name, rcondGot, rcondWant, diff)
}
}