mirror of
https://github.com/gonum/gonum.git
synced 2025-10-24 15:43:07 +08:00
Tidy Kendall correlation code
This commit is contained in:
committed by
Dan Kortschak
parent
6dd067537a
commit
afe00782c1
14
stat/stat.go
14
stat/stat.go
@@ -217,11 +217,14 @@ func Correlation(x, y, weights []float64) float64 {
|
||||
return (sxy - xcompensation*ycompensation/sumWeights) / math.Sqrt(sxx*syy)
|
||||
}
|
||||
|
||||
// KendallCorrelation returns the weighted Tau-a Kendall correlation between the
|
||||
// samples of x and y.
|
||||
// Kendall returns the weighted Tau-a Kendall correlation between the
|
||||
// samples of x and y. The Kendall correlation measures the quantity of
|
||||
// concordant and discordant pairs of numbers. If weights are specified then
|
||||
// each pair is weighted by weights[i] * weights[j] and the final sum is
|
||||
// normalized to stay between -1 and 1.
|
||||
// The lengths of x and y must be equal. If weights is nil then all of the
|
||||
// weights are 1. If weights is not nil, then len(x) must equal len(weights).
|
||||
func KendallCorrelation(x, y, weights []float64) float64 {
|
||||
func Kendall(x, y, weights []float64) float64 {
|
||||
if len(x) != len(y) {
|
||||
panic("stat: slice length mismatch")
|
||||
}
|
||||
@@ -250,15 +253,12 @@ func KendallCorrelation(x, y, weights []float64) float64 {
|
||||
|
||||
var sumWeights float64
|
||||
|
||||
var c int
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
for j := i; j < n; j++ {
|
||||
if i == j {
|
||||
continue
|
||||
}
|
||||
c++
|
||||
var weight = weights[i] * weights[j]
|
||||
weight := weights[i] * weights[j]
|
||||
if math.Signbit(x[j]-x[i]) == math.Signbit(y[j]-y[i]) {
|
||||
cc += weight
|
||||
} else {
|
||||
|
||||
@@ -136,7 +136,7 @@ func TestCorrelation(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func ExampleKendallCorrelation() {
|
||||
func ExampleKendall() {
|
||||
x := []float64{8, -3, 7, 8, -4}
|
||||
y := []float64{10, 5, 6, 3, -1}
|
||||
w := []float64{2, 1.5, 3, 3, 2}
|
||||
@@ -144,7 +144,7 @@ func ExampleKendallCorrelation() {
|
||||
fmt.Println("Kendall correlation computes the number of ordered pairs")
|
||||
fmt.Println("between two datasets.")
|
||||
|
||||
c := KendallCorrelation(x, y, w)
|
||||
c := Kendall(x, y, w)
|
||||
fmt.Printf("Kendall correlation is %.5f\n", c)
|
||||
|
||||
// Output:
|
||||
@@ -153,7 +153,7 @@ func ExampleKendallCorrelation() {
|
||||
// Kendall correlation is 0.25000
|
||||
}
|
||||
|
||||
func TestKendallCorrelation(t *testing.T) {
|
||||
func TestKendall(t *testing.T) {
|
||||
for i, test := range []struct {
|
||||
x []float64
|
||||
y []float64
|
||||
@@ -197,19 +197,19 @@ func TestKendallCorrelation(t *testing.T) {
|
||||
ans: 1,
|
||||
},
|
||||
} {
|
||||
c := KendallCorrelation(test.x, test.y, test.weights)
|
||||
c := Kendall(test.x, test.y, test.weights)
|
||||
if math.Abs(test.ans-c) > 1e-14 {
|
||||
t.Errorf("Correlation mismatch case %d. Expected %v, Found %v", i, test.ans, c)
|
||||
}
|
||||
}
|
||||
if !panics(func() { KendallCorrelation(make([]float64, 2), make([]float64, 3), make([]float64, 3)) }) {
|
||||
t.Errorf("KendallCorrelation did not panic with length mismatch")
|
||||
if !panics(func() { Kendall(make([]float64, 2), make([]float64, 3), make([]float64, 3)) }) {
|
||||
t.Errorf("Kendall did not panic with length mismatch")
|
||||
}
|
||||
if !panics(func() { KendallCorrelation(make([]float64, 2), make([]float64, 3), nil) }) {
|
||||
t.Errorf("KendallCorrelation did not panic with length mismatch")
|
||||
if !panics(func() { Kendall(make([]float64, 2), make([]float64, 3), nil) }) {
|
||||
t.Errorf("Kendall did not panic with length mismatch")
|
||||
}
|
||||
if !panics(func() { KendallCorrelation(make([]float64, 3), make([]float64, 3), make([]float64, 2)) }) {
|
||||
t.Errorf("KendallCorrelation did not panic with weights length mismatch")
|
||||
if !panics(func() { Kendall(make([]float64, 3), make([]float64, 3), make([]float64, 2)) }) {
|
||||
t.Errorf("Kendall did not panic with weights length mismatch")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user