mirror of
https://github.com/gonum/gonum.git
synced 2025-10-08 16:40:06 +08:00
stat: add support for LinInterp CumulantKind for Quantile
This commit is contained in:

committed by
Dan Kortschak

parent
daffec1b9d
commit
acd85591b9
28
stat/stat.go
28
stat/stat.go
@@ -20,6 +20,8 @@ type CumulantKind int
|
||||
const (
|
||||
// Empirical treats the distribution as the actual empirical distribution.
|
||||
Empirical CumulantKind = 1
|
||||
// LinInterp linearly interpolates the empirical distribution between sample values, with a flat extrapolation.
|
||||
LinInterp CumulantKind = 4
|
||||
)
|
||||
|
||||
// bhattacharyyaCoeff computes the Bhattacharyya Coefficient for probability distributions given by:
|
||||
@@ -1028,6 +1030,7 @@ func MomentAbout(moment float64, x []float64, mean float64, weights []float64) f
|
||||
// CumulantKind behaviors:
|
||||
// - Empirical: Returns the lowest value q for which q is greater than or equal
|
||||
// to the fraction p of samples
|
||||
// - LinInterp: Returns the linearly interpolated value
|
||||
func Quantile(p float64, c CumulantKind, x, weights []float64) float64 {
|
||||
if !(p >= 0 && p <= 1) {
|
||||
panic("stat: percentile out of bounds")
|
||||
@@ -1052,6 +1055,8 @@ func Quantile(p float64, c CumulantKind, x, weights []float64) float64 {
|
||||
switch c {
|
||||
case Empirical:
|
||||
return empiricalQuantile(p, x, weights, sumWeights)
|
||||
case LinInterp:
|
||||
return linInterpQuantile(p, x, weights, sumWeights)
|
||||
default:
|
||||
panic("stat: bad cumulant kind")
|
||||
}
|
||||
@@ -1073,6 +1078,29 @@ func empiricalQuantile(p float64, x, weights []float64, sumWeights float64) floa
|
||||
panic("impossible")
|
||||
}
|
||||
|
||||
func linInterpQuantile(p float64, x, weights []float64, sumWeights float64) float64 {
|
||||
var cumsum float64
|
||||
fidx := p * sumWeights
|
||||
for i := range x {
|
||||
if weights == nil {
|
||||
cumsum++
|
||||
} else {
|
||||
cumsum += weights[i]
|
||||
}
|
||||
if cumsum >= fidx {
|
||||
if i == 0 {
|
||||
return x[0]
|
||||
}
|
||||
t := cumsum - fidx
|
||||
if weights != nil {
|
||||
t /= weights[i]
|
||||
}
|
||||
return t*x[i-1] + (1-t)*x[i]
|
||||
}
|
||||
}
|
||||
panic("impossible")
|
||||
}
|
||||
|
||||
// Skew computes the skewness of the sample data.
|
||||
// If weights is nil then all of the weights are 1. If weights is not nil, then
|
||||
// len(x) must equal len(weights).
|
||||
|
@@ -1423,7 +1423,10 @@ func TestCDF(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestQuantile(t *testing.T) {
|
||||
cumulantKinds := []CumulantKind{Empirical}
|
||||
cumulantKinds := []CumulantKind{
|
||||
Empirical,
|
||||
LinInterp,
|
||||
}
|
||||
for i, test := range []struct {
|
||||
p []float64
|
||||
x []float64
|
||||
@@ -1434,18 +1437,36 @@ func TestQuantile(t *testing.T) {
|
||||
p: []float64{0, 0.05, 0.1, 0.15, 0.45, 0.5, 0.55, 0.85, 0.9, 0.95, 1},
|
||||
x: []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
||||
w: nil,
|
||||
ans: [][]float64{{1, 1, 1, 2, 5, 5, 6, 9, 9, 10, 10}},
|
||||
ans: [][]float64{
|
||||
{1, 1, 1, 2, 5, 5, 6, 9, 9, 10, 10},
|
||||
{1, 1, 1, 1.5, 4.5, 5, 5.5, 8.5, 9, 9.5, 10},
|
||||
},
|
||||
},
|
||||
{
|
||||
p: []float64{0, 0.05, 0.1, 0.15, 0.45, 0.5, 0.55, 0.85, 0.9, 0.95, 1},
|
||||
x: []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
||||
w: []float64{3, 3, 3, 3, 3, 3, 3, 3, 3, 3},
|
||||
ans: [][]float64{{1, 1, 1, 2, 5, 5, 6, 9, 9, 10, 10}},
|
||||
ans: [][]float64{
|
||||
{1, 1, 1, 2, 5, 5, 6, 9, 9, 10, 10},
|
||||
{1, 1, 1, 1.5, 4.5, 5, 5.5, 8.5, 9, 9.5, 10},
|
||||
},
|
||||
},
|
||||
{
|
||||
p: []float64{0, 0.05, 0.1, 0.15, 0.45, 0.5, 0.55, 0.85, 0.9, 0.95, 1},
|
||||
x: []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
||||
w: []float64{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
|
||||
ans: [][]float64{
|
||||
{1, 2, 3, 4, 7, 7, 8, 10, 10, 10, 10},
|
||||
{1, 1.875, 2.833333333333333, 3.5625, 6.535714285714286, 6.928571428571429, 7.281250000000001, 9.175, 9.45, 9.725, 10},
|
||||
},
|
||||
},
|
||||
{
|
||||
p: []float64{0.5},
|
||||
x: []float64{1, 2, 3, 4, 5, 6, 7, 8, math.NaN(), 10},
|
||||
ans: [][]float64{{math.NaN()}},
|
||||
ans: [][]float64{
|
||||
{math.NaN()},
|
||||
{math.NaN()},
|
||||
},
|
||||
},
|
||||
} {
|
||||
copyX := make([]float64, len(test.x))
|
||||
@@ -1470,53 +1491,55 @@ func TestQuantile(t *testing.T) {
|
||||
}
|
||||
}
|
||||
}
|
||||
// panic cases
|
||||
}
|
||||
|
||||
func TestQuantileInvalidInput(t *testing.T) {
|
||||
cumulantKinds := []CumulantKind{
|
||||
Empirical,
|
||||
LinInterp,
|
||||
}
|
||||
for _, test := range []struct {
|
||||
name string
|
||||
p float64
|
||||
c CumulantKind
|
||||
x []float64
|
||||
w []float64
|
||||
}{
|
||||
{
|
||||
name: "p < 0",
|
||||
c: Empirical,
|
||||
p: -1,
|
||||
},
|
||||
{
|
||||
name: "p > 1",
|
||||
c: Empirical,
|
||||
p: 2,
|
||||
},
|
||||
{
|
||||
name: "p is NaN",
|
||||
c: Empirical,
|
||||
p: math.NaN(),
|
||||
},
|
||||
{
|
||||
name: "len(x) != len(weights)",
|
||||
c: Empirical,
|
||||
p: .5,
|
||||
x: make([]float64, 4),
|
||||
w: make([]float64, 2),
|
||||
},
|
||||
{
|
||||
name: "x not sorted",
|
||||
c: Empirical,
|
||||
p: .5,
|
||||
x: []float64{3, 2, 1},
|
||||
},
|
||||
{
|
||||
name: "CumulantKind is unknown",
|
||||
c: CumulantKind(1000),
|
||||
p: .5,
|
||||
x: []float64{1, 2, 3},
|
||||
},
|
||||
} {
|
||||
if !panics(func() { Quantile(test.p, test.c, test.x, test.w) }) {
|
||||
for _, kind := range cumulantKinds {
|
||||
if !panics(func() { Quantile(test.p, kind, test.x, test.w) }) {
|
||||
t.Errorf("Quantile did not panic when %s", test.name)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestQuantileInvalidCumulantKind(t *testing.T) {
|
||||
if !panics(func() { Quantile(0.5, CumulantKind(1000), []float64{1, 2, 3}, nil) }) {
|
||||
t.Errorf("Quantile did not panic when CumulantKind is unknown")
|
||||
}
|
||||
}
|
||||
|
||||
func ExampleStdDev() {
|
||||
|
Reference in New Issue
Block a user