mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 23:26:52 +08:00
lapack/gonum,testlapack: fix bug in Dtrevc3 and rework its test
This commit is contained in:

committed by
Vladimír Chalupecký

parent
133b3496e8
commit
aafb56522f
@@ -647,7 +647,7 @@ leftev:
|
||||
// when forming the right-hand side.
|
||||
beta := math.Max(norms[j], norms[j+1])
|
||||
if beta > vcrit {
|
||||
bi.Dscal(n-ki+1, 1/vmax, b[ki*ldb+iv:], 1)
|
||||
bi.Dscal(n-ki, 1/vmax, b[ki*ldb+iv:], ldb)
|
||||
vmax = 1
|
||||
}
|
||||
b[j*ldb+iv] -= bi.Ddot(j-ki-1, t[(ki+1)*ldt+j:], ldt, b[(ki+1)*ldb+iv:], ldb)
|
||||
|
@@ -783,9 +783,9 @@ func residualRightEV(a, e blas64.General, wr, wi []float64) float64 {
|
||||
return math.Min(errnorm/anorm, 1)
|
||||
}
|
||||
|
||||
// residualRightEV returns the residual
|
||||
// residualLeftEV returns the residual
|
||||
// | Aᵀ E - E Wᵀ|_1 / ( |Aᵀ|_1 |E|_1 )
|
||||
// where the columns of E contain the right eigenvectors of A and W is a block diagonal matrix with
|
||||
// where the columns of E contain the left eigenvectors of A and W is a block diagonal matrix with
|
||||
// a 1×1 block for each real eigenvalue and a 2×2 block for each complex conjugate pair.
|
||||
func residualLeftEV(a, e blas64.General, wr, wi []float64) float64 {
|
||||
// The implementation follows DGET22 routine from the Reference LAPACK's
|
||||
|
@@ -11,8 +11,8 @@ import (
|
||||
|
||||
"golang.org/x/exp/rand"
|
||||
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/blas/blas64"
|
||||
"gonum.org/v1/gonum/floats"
|
||||
"gonum.org/v1/gonum/lapack"
|
||||
)
|
||||
|
||||
@@ -22,202 +22,421 @@ type Dtrevc3er interface {
|
||||
|
||||
func Dtrevc3Test(t *testing.T, impl Dtrevc3er) {
|
||||
rnd := rand.New(rand.NewSource(1))
|
||||
|
||||
for _, side := range []lapack.EVSide{lapack.EVRight, lapack.EVLeft, lapack.EVBoth} {
|
||||
for _, howmny := range []lapack.EVHowMany{lapack.EVAll, lapack.EVAllMulQ, lapack.EVSelected} {
|
||||
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 34, 100} {
|
||||
var name string
|
||||
switch side {
|
||||
case lapack.EVRight:
|
||||
name = "Rigth"
|
||||
case lapack.EVLeft:
|
||||
name = "Left"
|
||||
case lapack.EVBoth:
|
||||
name = "Both"
|
||||
}
|
||||
t.Run(name, func(t *testing.T) {
|
||||
runDtrevc3Test(t, impl, rnd, side)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func runDtrevc3Test(t *testing.T, impl Dtrevc3er, rnd *rand.Rand, side lapack.EVSide) {
|
||||
for _, n := range []int{0, 1, 2, 3, 4, 5, 6, 7, 10, 34} {
|
||||
for _, extra := range []int{0, 11} {
|
||||
for _, optwork := range []bool{true, false} {
|
||||
for cas := 0; cas < 10; cas++ {
|
||||
tmat := randomSchurCanonical(n, n+extra, rnd)
|
||||
testDtrevc3(t, impl, side, howmny, tmat, optwork, rnd)
|
||||
}
|
||||
}
|
||||
dtrevc3Test(t, impl, side, n, extra, optwork, rnd)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func testDtrevc3(t *testing.T, impl Dtrevc3er, side lapack.EVSide, howmny lapack.EVHowMany, tmat blas64.General, optwork bool, rnd *rand.Rand) {
|
||||
const tol = 1e-14
|
||||
// dtrevc3Test tests Dtrevc3 by generating a random matrix T in Schur canonical
|
||||
// form and performing the following checks:
|
||||
// 1. Compute all eigenvectors of T and check that they are indeed correctly
|
||||
// normalized eigenvectors
|
||||
// 2. Compute selected eigenvectors and check that they are exactly equal to
|
||||
// eigenvectors from check 1.
|
||||
// 3. Compute all eigenvectors multiplied into a matrix Q and check that the
|
||||
// result is equal to eigenvectors from step 1 multiplied by Q and scaled
|
||||
// appropriately.
|
||||
func dtrevc3Test(t *testing.T, impl Dtrevc3er, side lapack.EVSide, n, extra int, optwork bool, rnd *rand.Rand) {
|
||||
const tol = 1e-15
|
||||
|
||||
name := fmt.Sprintf("n=%d,extra=%d,optwk=%v", n, extra, optwork)
|
||||
|
||||
n := tmat.Rows
|
||||
extra := tmat.Stride - tmat.Cols
|
||||
right := side != lapack.EVLeft
|
||||
left := side != lapack.EVRight
|
||||
|
||||
var selected, selectedWant []bool
|
||||
var mWant int // How many columns will the eigenvectors occupy.
|
||||
if howmny == lapack.EVSelected {
|
||||
selected = make([]bool, n)
|
||||
selectedWant = make([]bool, n)
|
||||
// Dtrevc3 will compute only selected eigenvectors. Pick them
|
||||
// randomly disregarding whether they are real or complex.
|
||||
for i := range selected {
|
||||
if rnd.Float64() < 0.5 {
|
||||
selected[i] = true
|
||||
}
|
||||
}
|
||||
// Dtrevc3 will modify (standardize) the slice selected based on
|
||||
// whether the corresponding eigenvalues are real or complex. Do
|
||||
// the same process here to fill selectedWant.
|
||||
for i := 0; i < n; {
|
||||
if i == n-1 || tmat.Data[(i+1)*tmat.Stride+i] == 0 {
|
||||
// Real eigenvalue.
|
||||
if selected[i] {
|
||||
selectedWant[i] = true
|
||||
mWant++ // Real eigenvectors occupy one column.
|
||||
}
|
||||
i++
|
||||
} else {
|
||||
// Complex eigenvalue.
|
||||
if selected[i] || selected[i+1] {
|
||||
// Dtrevc3 will modify selected so that
|
||||
// only the first element of the pair is
|
||||
// true.
|
||||
selectedWant[i] = true
|
||||
mWant += 2 // Complex eigenvectors occupy two columns.
|
||||
}
|
||||
i += 2
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// All eigenvectors occupy n columns.
|
||||
mWant = n
|
||||
}
|
||||
// Generate a random matrix in Schur canonical form possibly with tiny or zero eigenvalues.
|
||||
// Zero elements of wi signify a real eigenvalue.
|
||||
tmat, wr, wi := randomSchurCanonical(n, n+extra, rnd)
|
||||
tmatCopy := cloneGeneral(tmat)
|
||||
|
||||
var vr blas64.General
|
||||
// 1. Compute all eigenvectors of T and check that they are indeed correctly
|
||||
// normalized eigenvectors
|
||||
|
||||
howmny := lapack.EVAll
|
||||
|
||||
var vr, vl blas64.General
|
||||
if right {
|
||||
if howmny == lapack.EVAllMulQ {
|
||||
vr = eye(n, n+extra)
|
||||
} else {
|
||||
// VR will be overwritten.
|
||||
vr = nanGeneral(n, mWant, n+extra)
|
||||
// Fill VR and VL with NaN because they should be completely overwritten in Dtrevc3.
|
||||
vr = nanGeneral(n, n, n+extra)
|
||||
}
|
||||
}
|
||||
|
||||
var vl blas64.General
|
||||
if left {
|
||||
if howmny == lapack.EVAllMulQ {
|
||||
vl = eye(n, n+extra)
|
||||
vl = nanGeneral(n, n, n+extra)
|
||||
}
|
||||
|
||||
var work []float64
|
||||
if optwork {
|
||||
work = []float64{0}
|
||||
impl.Dtrevc3(side, howmny, nil, n, tmat.Data, tmat.Stride,
|
||||
vl.Data, max(1, vl.Stride), vr.Data, max(1, vr.Stride), n, work, -1)
|
||||
work = make([]float64, int(work[0]))
|
||||
} else {
|
||||
// VL will be overwritten.
|
||||
vl = nanGeneral(n, mWant, n+extra)
|
||||
work = make([]float64, max(1, 3*n))
|
||||
}
|
||||
|
||||
mGot := impl.Dtrevc3(side, howmny, nil, n, tmat.Data, tmat.Stride,
|
||||
vl.Data, max(1, vl.Stride), vr.Data, max(1, vr.Stride), n, work, len(work))
|
||||
|
||||
if !generalOutsideAllNaN(tmat) {
|
||||
t.Errorf("%v: out-of-range write to T", name)
|
||||
}
|
||||
if !equalGeneral(tmat, tmatCopy) {
|
||||
t.Errorf("%v: unexpected modification of T", name)
|
||||
}
|
||||
if !generalOutsideAllNaN(vr) {
|
||||
t.Errorf("%v: out-of-range write to VR", name)
|
||||
}
|
||||
if !generalOutsideAllNaN(vl) {
|
||||
t.Errorf("%v: out-of-range write to VL", name)
|
||||
}
|
||||
|
||||
mWant := n
|
||||
if mGot != mWant {
|
||||
t.Errorf("%v: unexpected value of m=%d, want %d", name, mGot, mWant)
|
||||
}
|
||||
|
||||
if right {
|
||||
resid := residualRightEV(tmat, vr, wr, wi)
|
||||
if resid > tol {
|
||||
t.Errorf("%v: unexpected right eigenvectors; residual=%v, want<=%v", name, resid, tol)
|
||||
}
|
||||
resid = residualEVNormalization(vr, wi)
|
||||
if resid > tol {
|
||||
t.Errorf("%v: unexpected normalization of right eigenvectors; residual=%v, want<=%v", name, resid, tol)
|
||||
}
|
||||
}
|
||||
if left {
|
||||
resid := residualLeftEV(tmat, vl, wr, wi)
|
||||
if resid > tol {
|
||||
t.Errorf("%v: unexpected left eigenvectors; residual=%v, want<=%v", name, resid, tol)
|
||||
}
|
||||
resid = residualEVNormalization(vl, wi)
|
||||
if resid > tol {
|
||||
t.Errorf("%v: unexpected normalization of left eigenvectors; residual=%v, want<=%v", name, resid, tol)
|
||||
}
|
||||
}
|
||||
|
||||
work := make([]float64, max(1, 3*n))
|
||||
// 2. Compute selected eigenvectors and check that they are exactly equal to
|
||||
// eigenvectors from check 1.
|
||||
|
||||
howmny = lapack.EVSelected
|
||||
|
||||
// Follow DCHKHS and select last max(1,n/4) real, max(1,n/4) complex
|
||||
// eigenvectors instead of selecting them randomly.
|
||||
selected := make([]bool, n)
|
||||
selectedWant := make([]bool, n)
|
||||
var nselr, nselc int
|
||||
for j := n - 1; j > 0; {
|
||||
if wi[j] == 0 {
|
||||
if nselr < max(1, n/4) {
|
||||
nselr++
|
||||
selected[j] = true
|
||||
selectedWant[j] = true
|
||||
}
|
||||
j--
|
||||
} else {
|
||||
if nselc < max(1, n/4) {
|
||||
nselc++
|
||||
// Select all columns to check that Dtrevc3 normalizes 'selected' correctly.
|
||||
selected[j] = true
|
||||
selected[j-1] = true
|
||||
selectedWant[j] = false
|
||||
selectedWant[j-1] = true
|
||||
}
|
||||
j -= 2
|
||||
}
|
||||
}
|
||||
mWant = nselr + 2*nselc
|
||||
|
||||
var vrSel, vlSel blas64.General
|
||||
if right {
|
||||
vrSel = nanGeneral(n, mWant, n+extra)
|
||||
}
|
||||
if left {
|
||||
vlSel = nanGeneral(n, mWant, n+extra)
|
||||
}
|
||||
|
||||
if optwork {
|
||||
// Reallocate optimal work in case it depends on howmny and selected.
|
||||
work = []float64{0}
|
||||
impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
|
||||
vl.Data, max(1, vl.Stride), vr.Data, max(1, vr.Stride), mWant, work, -1)
|
||||
vlSel.Data, max(1, vlSel.Stride), vrSel.Data, max(1, vrSel.Stride), mWant, work, -1)
|
||||
work = make([]float64, int(work[0]))
|
||||
}
|
||||
|
||||
m := impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
|
||||
vl.Data, max(1, vl.Stride), vr.Data, max(1, vr.Stride), mWant, work, len(work))
|
||||
|
||||
prefix := fmt.Sprintf("Case side=%v, howmny=%v, n=%v, extra=%v, optwk=%v",
|
||||
side, howmny, n, extra, optwork)
|
||||
mGot = impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
|
||||
vlSel.Data, max(1, vlSel.Stride), vrSel.Data, max(1, vrSel.Stride), mWant, work, len(work))
|
||||
|
||||
if !generalOutsideAllNaN(tmat) {
|
||||
t.Errorf("%v: out-of-range write to T", prefix)
|
||||
t.Errorf("%v: out-of-range write to T", name)
|
||||
}
|
||||
if !generalOutsideAllNaN(vl) {
|
||||
t.Errorf("%v: out-of-range write to VL", prefix)
|
||||
if !equalGeneral(tmat, tmatCopy) {
|
||||
t.Errorf("%v: unexpected modification of T", name)
|
||||
}
|
||||
if !generalOutsideAllNaN(vr) {
|
||||
t.Errorf("%v: out-of-range write to VR", prefix)
|
||||
if !generalOutsideAllNaN(vrSel) {
|
||||
t.Errorf("%v: out-of-range write to selected VR", name)
|
||||
}
|
||||
if !generalOutsideAllNaN(vlSel) {
|
||||
t.Errorf("%v: out-of-range write to selected VL", name)
|
||||
}
|
||||
|
||||
if m != mWant {
|
||||
t.Errorf("%v: unexpected value of m. Want %v, got %v", prefix, mWant, m)
|
||||
if mGot != mWant {
|
||||
t.Errorf("%v: unexpected value of selected m=%d, want %d", name, mGot, mWant)
|
||||
}
|
||||
|
||||
if howmny == lapack.EVSelected {
|
||||
for i := range selected {
|
||||
if selected[i] != selectedWant[i] {
|
||||
t.Errorf("%v: unexpected selected[%v]", prefix, i)
|
||||
}
|
||||
t.Errorf("%v: unexpected selected[%v]", name, i)
|
||||
}
|
||||
}
|
||||
|
||||
// Check that the columns of VR and VL are actually eigenvectors and
|
||||
// that the magnitude of their largest element is 1.
|
||||
// Check that selected columns of vrSel are equal to the corresponding
|
||||
// columns of vr.
|
||||
var k int
|
||||
for j := 0; j < n; {
|
||||
re := tmat.Data[j*tmat.Stride+j]
|
||||
if j == n-1 || tmat.Data[(j+1)*tmat.Stride+j] == 0 {
|
||||
if howmny == lapack.EVSelected && !selected[j] {
|
||||
j++
|
||||
continue
|
||||
}
|
||||
match := true
|
||||
if right {
|
||||
ev := columnOf(vr, k)
|
||||
norm := floats.Norm(ev, math.Inf(1))
|
||||
if math.Abs(norm-1) > tol {
|
||||
t.Errorf("%v: magnitude of largest element of VR[:,%v] not 1", prefix, k)
|
||||
}
|
||||
if !isRightEigenvectorOf(tmat, ev, nil, complex(re, 0), tol) {
|
||||
t.Errorf("%v: VR[:,%v] is not real right eigenvector", prefix, k)
|
||||
}
|
||||
}
|
||||
if left {
|
||||
ev := columnOf(vl, k)
|
||||
norm := floats.Norm(ev, math.Inf(1))
|
||||
if math.Abs(norm-1) > tol {
|
||||
t.Errorf("%v: magnitude of largest element of VL[:,%v] not 1", prefix, k)
|
||||
}
|
||||
if !isLeftEigenvectorOf(tmat, ev, nil, complex(re, 0), tol) {
|
||||
t.Errorf("%v: VL[:,%v] is not real left eigenvector", prefix, k)
|
||||
loopVR:
|
||||
for j := 0; j < n; j++ {
|
||||
if selected[j] && wi[j] == 0 {
|
||||
for i := 0; i < n; i++ {
|
||||
if vrSel.Data[i*vrSel.Stride+k] != vr.Data[i*vr.Stride+j] {
|
||||
match = false
|
||||
break loopVR
|
||||
}
|
||||
}
|
||||
k++
|
||||
j++
|
||||
continue
|
||||
}
|
||||
if howmny == lapack.EVSelected && !selected[j] {
|
||||
j += 2
|
||||
continue
|
||||
}
|
||||
im := math.Sqrt(math.Abs(tmat.Data[(j+1)*tmat.Stride+j])) *
|
||||
math.Sqrt(math.Abs(tmat.Data[j*tmat.Stride+j+1]))
|
||||
if right {
|
||||
evre := columnOf(vr, k)
|
||||
evim := columnOf(vr, k+1)
|
||||
var evmax float64
|
||||
for i, v := range evre {
|
||||
evmax = math.Max(evmax, math.Abs(v)+math.Abs(evim[i]))
|
||||
}
|
||||
if math.Abs(evmax-1) > tol {
|
||||
t.Errorf("%v: magnitude of largest element of VR[:,%v] not 1", prefix, k)
|
||||
}
|
||||
if !isRightEigenvectorOf(tmat, evre, evim, complex(re, im), tol) {
|
||||
t.Errorf("%v: VR[:,%v:%v] is not complex right eigenvector", prefix, k, k+1)
|
||||
}
|
||||
floats.Scale(-1, evim)
|
||||
if !isRightEigenvectorOf(tmat, evre, evim, complex(re, -im), tol) {
|
||||
t.Errorf("%v: VR[:,%v:%v] is not complex right eigenvector", prefix, k, k+1)
|
||||
}
|
||||
}
|
||||
if left {
|
||||
evre := columnOf(vl, k)
|
||||
evim := columnOf(vl, k+1)
|
||||
var evmax float64
|
||||
for i, v := range evre {
|
||||
evmax = math.Max(evmax, math.Abs(v)+math.Abs(evim[i]))
|
||||
}
|
||||
if math.Abs(evmax-1) > tol {
|
||||
t.Errorf("%v: magnitude of largest element of VL[:,%v] not 1", prefix, k)
|
||||
}
|
||||
if !isLeftEigenvectorOf(tmat, evre, evim, complex(re, im), tol) {
|
||||
t.Errorf("%v: VL[:,%v:%v] is not complex left eigenvector", prefix, k, k+1)
|
||||
}
|
||||
floats.Scale(-1, evim)
|
||||
if !isLeftEigenvectorOf(tmat, evre, evim, complex(re, -im), tol) {
|
||||
t.Errorf("%v: VL[:,%v:%v] is not complex left eigenvector", prefix, k, k+1)
|
||||
} else if selected[j] && wi[j] != 0 {
|
||||
for i := 0; i < n; i++ {
|
||||
if vrSel.Data[i*vrSel.Stride+k] != vr.Data[i*vr.Stride+j] ||
|
||||
vrSel.Data[i*vrSel.Stride+k+1] != vr.Data[i*vr.Stride+j+1] {
|
||||
match = false
|
||||
break loopVR
|
||||
}
|
||||
}
|
||||
k += 2
|
||||
j += 2
|
||||
}
|
||||
}
|
||||
}
|
||||
if !match {
|
||||
t.Errorf("%v: unexpected selected VR", name)
|
||||
}
|
||||
|
||||
// Check that selected columns of vlSel are equal to the corresponding
|
||||
// columns of vl.
|
||||
match = true
|
||||
k = 0
|
||||
if left {
|
||||
loopVL:
|
||||
for j := 0; j < n; j++ {
|
||||
if selected[j] && wi[j] == 0 {
|
||||
for i := 0; i < n; i++ {
|
||||
if vlSel.Data[i*vlSel.Stride+k] != vl.Data[i*vl.Stride+j] {
|
||||
match = false
|
||||
break loopVL
|
||||
}
|
||||
}
|
||||
k++
|
||||
} else if selected[j] && wi[j] != 0 {
|
||||
for i := 0; i < n; i++ {
|
||||
if vlSel.Data[i*vlSel.Stride+k] != vl.Data[i*vl.Stride+j] ||
|
||||
vlSel.Data[i*vlSel.Stride+k+1] != vl.Data[i*vl.Stride+j+1] {
|
||||
match = false
|
||||
break loopVL
|
||||
}
|
||||
}
|
||||
k += 2
|
||||
}
|
||||
}
|
||||
}
|
||||
if !match {
|
||||
t.Errorf("%v: unexpected selected VL", name)
|
||||
}
|
||||
|
||||
// 3. Compute all eigenvectors multiplied into a matrix Q and check that the
|
||||
// result is equal to eigenvectors from step 1 multiplied by Q and scaled
|
||||
// appropriately.
|
||||
|
||||
howmny = lapack.EVAllMulQ
|
||||
|
||||
var vrMul, qr blas64.General
|
||||
var vlMul, ql blas64.General
|
||||
if right {
|
||||
vrMul = randomGeneral(n, n, n+extra, rnd)
|
||||
qr = cloneGeneral(vrMul)
|
||||
}
|
||||
if left {
|
||||
vlMul = randomGeneral(n, n, n+extra, rnd)
|
||||
ql = cloneGeneral(vlMul)
|
||||
}
|
||||
|
||||
if optwork {
|
||||
// Reallocate optimal work in case it depends on howmny and selected.
|
||||
work = []float64{0}
|
||||
impl.Dtrevc3(side, howmny, nil, n, tmat.Data, tmat.Stride,
|
||||
vlMul.Data, max(1, vlMul.Stride), vrMul.Data, max(1, vrMul.Stride), n, work, -1)
|
||||
work = make([]float64, int(work[0]))
|
||||
}
|
||||
|
||||
mGot = impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
|
||||
vlMul.Data, max(1, vlMul.Stride), vrMul.Data, max(1, vrMul.Stride), n, work, len(work))
|
||||
|
||||
if !generalOutsideAllNaN(tmat) {
|
||||
t.Errorf("%v: out-of-range write to T", name)
|
||||
}
|
||||
if !equalGeneral(tmat, tmatCopy) {
|
||||
t.Errorf("%v: unexpected modification of T", name)
|
||||
}
|
||||
if !generalOutsideAllNaN(vrMul) {
|
||||
t.Errorf("%v: out-of-range write to VRMul", name)
|
||||
}
|
||||
if !generalOutsideAllNaN(vlMul) {
|
||||
t.Errorf("%v: out-of-range write to VLMul", name)
|
||||
}
|
||||
|
||||
mWant = n
|
||||
if mGot != mWant {
|
||||
t.Errorf("%v: unexpected value of m=%d, want %d", name, mGot, mWant)
|
||||
}
|
||||
|
||||
if right {
|
||||
// Compute Q * VR explicitly and normalize to match Dtrevc3 output.
|
||||
qvWant := zeros(n, n, n)
|
||||
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qr, vr, 0, qvWant)
|
||||
normalizeEV(qvWant, wi)
|
||||
|
||||
// Compute the difference between Dtrevc3 output and Q * VR.
|
||||
r := zeros(n, n, n)
|
||||
for i := 0; i < n; i++ {
|
||||
for j := 0; j < n; j++ {
|
||||
r.Data[i*r.Stride+j] = vrMul.Data[i*vrMul.Stride+j] - qvWant.Data[i*qvWant.Stride+j]
|
||||
}
|
||||
}
|
||||
qvNorm := dlange(lapack.MaxColumnSum, n, n, qvWant.Data, qvWant.Stride)
|
||||
resid := dlange(lapack.MaxColumnSum, n, n, r.Data, r.Stride) / qvNorm / float64(n)
|
||||
if resid > tol {
|
||||
t.Errorf("%v: unexpected VRMul; resid=%v, want <=%v", name, resid, tol)
|
||||
}
|
||||
}
|
||||
if left {
|
||||
// Compute Q * VL explicitly and normalize to match Dtrevc3 output.
|
||||
qvWant := zeros(n, n, n)
|
||||
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, ql, vl, 0, qvWant)
|
||||
normalizeEV(qvWant, wi)
|
||||
|
||||
// Compute the difference between Dtrevc3 output and Q * VL.
|
||||
r := zeros(n, n, n)
|
||||
for i := 0; i < n; i++ {
|
||||
for j := 0; j < n; j++ {
|
||||
r.Data[i*r.Stride+j] = vlMul.Data[i*vlMul.Stride+j] - qvWant.Data[i*qvWant.Stride+j]
|
||||
}
|
||||
}
|
||||
qvNorm := dlange(lapack.MaxColumnSum, n, n, qvWant.Data, qvWant.Stride)
|
||||
resid := dlange(lapack.MaxColumnSum, n, n, r.Data, r.Stride) / qvNorm / float64(n)
|
||||
if resid > tol {
|
||||
t.Errorf("%v: unexpected VLMul; resid=%v, want <=%v", name, resid, tol)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// residualEVNormalization returns the maximum normalization error in E:
|
||||
// max |max-norm(E[:,j]) - 1|
|
||||
func residualEVNormalization(emat blas64.General, wi []float64) float64 {
|
||||
n := emat.Rows
|
||||
if n == 0 {
|
||||
return 0
|
||||
}
|
||||
var (
|
||||
e = emat.Data
|
||||
lde = emat.Stride
|
||||
enrmin = math.Inf(1)
|
||||
enrmax float64
|
||||
ipair int
|
||||
)
|
||||
for j := 0; j < n; j++ {
|
||||
if ipair == 0 && j < n-1 && wi[j] != 0 {
|
||||
ipair = 1
|
||||
}
|
||||
var nrm float64
|
||||
switch ipair {
|
||||
case 0:
|
||||
// Real eigenvector
|
||||
for i := 0; i < n; i++ {
|
||||
nrm = math.Max(nrm, math.Abs(e[i*lde+j]))
|
||||
}
|
||||
enrmin = math.Min(enrmin, nrm)
|
||||
enrmax = math.Max(enrmax, nrm)
|
||||
case 1:
|
||||
// Complex eigenvector
|
||||
for i := 0; i < n; i++ {
|
||||
nrm = math.Max(nrm, math.Abs(e[i*lde+j])+math.Abs(e[i*lde+j+1]))
|
||||
}
|
||||
enrmin = math.Min(enrmin, nrm)
|
||||
enrmax = math.Max(enrmax, nrm)
|
||||
ipair = 2
|
||||
case 2:
|
||||
ipair = 0
|
||||
}
|
||||
}
|
||||
return math.Max(math.Abs(enrmin-1), math.Abs(enrmin-1))
|
||||
}
|
||||
|
||||
// normalizeEV normalizes eigenvectors in the columns of E so that the element
|
||||
// of largest magnitude has magnitude 1.
|
||||
func normalizeEV(emat blas64.General, wi []float64) {
|
||||
n := emat.Rows
|
||||
if n == 0 {
|
||||
return
|
||||
}
|
||||
var (
|
||||
bi = blas64.Implementation()
|
||||
e = emat.Data
|
||||
lde = emat.Stride
|
||||
ipair int
|
||||
)
|
||||
for j := 0; j < n; j++ {
|
||||
if ipair == 0 && j < n-1 && wi[j] != 0 {
|
||||
ipair = 1
|
||||
}
|
||||
switch ipair {
|
||||
case 0:
|
||||
// Real eigenvector
|
||||
ii := bi.Idamax(n, e[j:], lde)
|
||||
remax := 1 / math.Abs(e[ii*lde+j])
|
||||
bi.Dscal(n, remax, e[j:], lde)
|
||||
case 1:
|
||||
// Complex eigenvector
|
||||
var emax float64
|
||||
for i := 0; i < n; i++ {
|
||||
emax = math.Max(emax, math.Abs(e[i*lde+j])+math.Abs(e[i*lde+j+1]))
|
||||
}
|
||||
bi.Dscal(n, 1/emax, e[j:], lde)
|
||||
bi.Dscal(n, 1/emax, e[j+1:], lde)
|
||||
ipair = 2
|
||||
case 2:
|
||||
ipair = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user