{cgo,native}: use square brackets for matrix typography

This commit is contained in:
kortschak
2016-02-16 13:19:05 +10:30
parent 3d87f56b23
commit a9fa88d974
4 changed files with 49 additions and 49 deletions

View File

@@ -260,18 +260,18 @@ func (impl Implementation) Dbdsqr(uplo blas.Uplo, n, ncvt, nru, ncc int, d, e, v
// G_i = I - tauP[i] * u_i * u_i^T
//
// As an example, on exit the entries of A when m = 6, and n = 5
// ( d e u1 u1 u1 )
// ( v1 d e u2 u2 )
// ( v1 v2 d e u3 )
// ( v1 v2 v3 d e )
// ( v1 v2 v3 v4 d )
// ( v1 v2 v3 v4 v5 )
// [d e u1 u1 u1]
// [v1 d e u2 u2]
// [v1 v2 d e u3]
// [v1 v2 v3 d e ]
// [v1 v2 v3 v4 d ]
// [v1 v2 v3 v4 v5]
// and when m = 5, n = 6
// ( d u1 u1 u1 u1 u1 )
// ( e d u2 u2 u2 u2 )
// ( v1 e d u3 u3 u3 )
// ( v1 v2 e d u4 u4 )
// ( v1 v2 v3 e d u5 )
// [d u1 u1 u1 u1 u1]
// [e d u2 u2 u2 u2]
// [v1 e d u3 u3 u3]
// [v1 v2 e d u4 u4]
// [v1 v2 v3 e d u5]
//
// d, tauQ, and tauP must all have length at least min(m,n), and e must have
// length min(m,n) - 1.

View File

@@ -26,18 +26,18 @@ import (
// G_i = I - tauP[i] * u_i * u_i^T
//
// As an example, on exit the entries of A when m = 6, and n = 5
// ( d e u1 u1 u1 )
// ( v1 d e u2 u2 )
// ( v1 v2 d e u3 )
// ( v1 v2 v3 d e )
// ( v1 v2 v3 v4 d )
// ( v1 v2 v3 v4 v5 )
// [d e u1 u1 u1]
// [v1 d e u2 u2]
// [v1 v2 d e u3]
// [v1 v2 v3 d e ]
// [v1 v2 v3 v4 d ]
// [v1 v2 v3 v4 v5]
// and when m = 5, n = 6
// ( d u1 u1 u1 u1 u1 )
// ( e d u2 u2 u2 u2 )
// ( v1 e d u3 u3 u3 )
// ( v1 v2 e d u4 u4 )
// ( v1 v2 v3 e d u5 )
// [d u1 u1 u1 u1 u1]
// [e d u2 u2 u2 u2]
// [v1 e d u3 u3 u3]
// [v1 v2 e d u4 u4]
// [v1 v2 v3 e d u5]
//
// d, tauQ, and tauP must all have length at least min(m,n), and e must have
// length min(m,n) - 1.

View File

@@ -29,18 +29,18 @@ import (
// G_i = I - tauP[i] * u_i * u_i^T
//
// As an example, on exit the entries of A when m = 6, n = 5, and nb = 2
// ( 1 1 u1 u1 u1 )
// ( v1 1 1 u2 u2 )
// ( v1 v2 a a a )
// ( v1 v2 a a a )
// ( v1 v2 a a a )
// ( v1 v2 a a a )
// [1 1 u1 u1 u1]
// [v1 1 1 u2 u2]
// [v1 v2 a a a ]
// [v1 v2 a a a ]
// [v1 v2 a a a ]
// [v1 v2 a a a ]
// and when m = 5, n = 6, and nb = 2
// ( 1 u1 u1 u1 u1 u1 )
// ( 1 1 u2 u2 u2 u2 )
// ( v1 1 a a a a )
// ( v1 v2 a a a a )
// ( v1 v2 a a a a )
// [1 u1 u1 u1 u1 u1]
// [1 1 u2 u2 u2 u2]
// [v1 1 a a a a ]
// [v1 v2 a a a a ]
// [v1 v2 a a a a ]
//
// Dlabrd also returns the matrices X and Y which are used with U and V to
// apply the transformation to the unreduced part of the matrix

View File

@@ -24,25 +24,25 @@ import (
// reflectors. In all cases the ones on the diagonal are implicitly represented.
//
// If direct == lapack.Forward and store == lapack.ColumnWise
// V = ( 1 )
// ( v1 1 )
// ( v1 v2 1 )
// ( v1 v2 v3 )
// ( v1 v2 v3 )
// V = [ 1 ]
// [v1 1 ]
// [v1 v2 1]
// [v1 v2 v3]
// [v1 v2 v3]
// If direct == lapack.Forward and store == lapack.RowWise
// V = ( 1 v1 v1 v1 v1 )
// ( 1 v2 v2 v2 )
// ( 1 v3 v3 )
// V = [ 1 v1 v1 v1 v1]
// [ 1 v2 v2 v2]
// [ 1 v3 v3]
// If direct == lapack.Backward and store == lapack.ColumnWise
// V = ( v1 v2 v3 )
// ( v1 v2 v3 )
// ( 1 v2 v3 )
// ( 1 v3 )
// ( 1 )
// V = [v1 v2 v3]
// [v1 v2 v3]
// [ 1 v2 v3]
// [ 1 v3]
// [ 1]
// If direct == lapack.Backward and store == lapack.RowWise
// V = ( v1 v1 1 )
// ( v2 v2 v2 1 )
// ( v3 v3 v3 v3 1 )
// V = [v1 v1 1 ]
// [v2 v2 v2 1 ]
// [v3 v3 v3 v3 1]
// An elementary reflector can be explicitly constructed by extracting the
// corresponding elements of v, placing a 1 where the diagonal would be, and
// placing zeros in the remaining elements.