split out non-blas impl into new function

Splitting out the non blas path makes the code flow easier to read.
This commit is contained in:
Jonathan J Lawlor
2014-11-17 22:26:52 -05:00
parent 4b7d9b397a
commit a4f07999f2

View File

@@ -6,17 +6,10 @@ package stat
import (
"sync"
// "runtime"
"github.com/gonum/matrix/mat64"
)
type covMatSlice struct {
i, j int
x, y []float64
}
// CovarianceMatrix calculates a covariance matrix (also known as a
// variance-covariance matrix) from a matrix of data, using a two-pass
// algorithm. It will have better performance if a BLAS engine is
@@ -27,71 +20,12 @@ func CovarianceMatrix(x mat64.Matrix) *mat64.Dense {
// matrix version of the two pass algorithm. This doesn't use
// the correction found in the Covariance and Variance functions.
r, c := x.Dims()
if x, ok := x.(mat64.Vectorer); ok {
cols := make([][]float64, c)
// perform the covariance or variance as required
blockSize := 1024
if blockSize > c {
blockSize = c
}
var wg sync.WaitGroup
wg.Add(c)
for j := 0; j < c; j++ {
go func(j int) {
// pull the columns out and subtract the means
cols[j] = make([]float64, r)
x.Col(cols[j], j)
mean := Mean(cols[j], nil)
for i := range cols[j] {
cols[j][i] -= mean
}
wg.Done()
}(j)
}
wg.Wait()
colCh := make(chan covMatSlice, blockSize)
wg.Add(blockSize)
m := mat64.NewDense(c, c, nil)
for i := 0; i < blockSize; i++ {
go func(in <-chan covMatSlice) {
for {
xy, more := <-in
if !more {
wg.Done()
return
}
if xy.i == xy.j {
m.Set(xy.i, xy.j, centeredVariance(xy.x))
continue
}
v := centeredCovariance(xy.x, xy.y)
m.Set(xy.i, xy.j, v)
m.Set(xy.j, xy.i, v)
}
}(colCh)
}
go func(out chan<- covMatSlice) {
for i := 0; i < c; i++ {
for j := 0; j <= i; j++ {
out <- covMatSlice{
i: i,
j: j,
x: cols[i],
y: cols[j],
}
}
}
close(out)
}(colCh)
// create the output matrix
wg.Wait()
return m
if mat64.Registered() == nil {
// implementation that doesn't rely on a blasEngine
return covarianceMatrixWithoutBLAS(x)
}
r, _ := x.Dims()
// determine the mean of each of the columns
b := ones(1, r)
b.Mul(b, x)
@@ -107,18 +41,99 @@ func CovarianceMatrix(x mat64.Matrix) *mat64.Dense {
}
}
// todo: avoid matrix copy?
var xt mat64.Dense
xt.TCopy(xc)
// It would be nice if we could indicate that this was a symmetric
// matrix.
// TODO: indicate that the resulting matrix is symmetric, which
// should improve performance.
var ss mat64.Dense
ss.Mul(&xt, xc)
ss.Scale(1/float64(r-1), &ss)
return &ss
}
type covMatSlice struct {
i, j int
x, y []float64
}
func covarianceMatrixWithoutBLAS(x mat64.Matrix) *mat64.Dense {
r, c := x.Dims()
// split out the matrix into columns
cols := make([][]float64, c)
for j := range cols {
cols[j] = make([]float64, r)
}
if xRaw, ok := x.(mat64.RawMatrixer); ok {
for k, v := range xRaw.RawMatrix().Data {
i := k / c
j := k % c
cols[j][i] = v
}
} else {
for j := 0; j < c; j++ {
for i := 0; i < r; i++ {
cols[j][i] = x.At(i, j)
}
}
}
// center the columns
for j := range cols {
mean := Mean(cols[j], nil)
for i := range cols[j] {
cols[j][i] -= mean
}
}
blockSize := 1024
if blockSize > c {
blockSize = c
}
var wg sync.WaitGroup
wg.Add(blockSize)
colCh := make(chan covMatSlice, blockSize)
m := mat64.NewDense(c, c, nil)
for i := 0; i < blockSize; i++ {
go func(in <-chan covMatSlice) {
for {
xy, more := <-in
if !more {
wg.Done()
return
}
if xy.i == xy.j {
m.Set(xy.i, xy.j, centeredVariance(xy.x))
continue
}
v := centeredCovariance(xy.x, xy.y)
m.Set(xy.i, xy.j, v)
m.Set(xy.j, xy.i, v)
}
}(colCh)
}
go func(out chan<- covMatSlice) {
for i := 0; i < c; i++ {
for j := 0; j <= i; j++ {
out <- covMatSlice{
i: i,
j: j,
x: cols[i],
y: cols[j],
}
}
}
close(out)
}(colCh)
// create the output matrix
wg.Wait()
return m
}
// ones is a matrix of all ones.
func ones(r, c int) *mat64.Dense {
x := make([]float64, r*c)