mirror of
https://github.com/gonum/gonum.git
synced 2025-10-04 23:02:42 +08:00
all: fix spelling errors
This commit is contained in:
@@ -11,7 +11,7 @@ var (
|
||||
_ blas.Complex128 = Implementation{}
|
||||
)
|
||||
|
||||
// TOOD(btracey): Replace this as complex routines are added, and instead
|
||||
// TODO(btracey): Replace this as complex routines are added, and instead
|
||||
// automatically generate the complex64 routines from the complex128 ones.
|
||||
|
||||
var noComplex = "native: implementation does not implement this routine, see the cgo wrapper in gonum.org/v1/netlib/blas"
|
||||
|
@@ -121,7 +121,7 @@ func dgemmParallel(aTrans, bTrans bool, m, n, k int, a []float64, lda int, b []f
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
// Make local copies of otherwise global variables to reduce shared memory.
|
||||
// This has a noticable effect on benchmarks in some cases.
|
||||
// This has a noticeable effect on benchmarks in some cases.
|
||||
alpha := alpha
|
||||
aTrans := aTrans
|
||||
bTrans := bTrans
|
||||
|
@@ -62,7 +62,7 @@ func min(a, b int) int {
|
||||
return a
|
||||
}
|
||||
|
||||
// blocks returns the number of divisons of the dimension length with the given
|
||||
// blocks returns the number of divisions of the dimension length with the given
|
||||
// block size.
|
||||
func blocks(dim, bsize int) int {
|
||||
return (dim + bsize - 1) / bsize
|
||||
|
@@ -186,7 +186,7 @@ func TestCumProd(t *testing.T) {
|
||||
emptyReceiver := make([]float64, 0)
|
||||
truth = []float64{}
|
||||
CumProd(emptyReceiver, emptyReceiver)
|
||||
AreSlicesEqual(t, truth, emptyReceiver, "Wrong cumprod returned with emtpy receiver")
|
||||
AreSlicesEqual(t, truth, emptyReceiver, "Wrong cumprod returned with empty receiver")
|
||||
|
||||
}
|
||||
|
||||
@@ -209,7 +209,7 @@ func TestCumSum(t *testing.T) {
|
||||
emptyReceiver := make([]float64, 0)
|
||||
truth = []float64{}
|
||||
CumSum(emptyReceiver, emptyReceiver)
|
||||
AreSlicesEqual(t, truth, emptyReceiver, "Wrong cumsum returned with emtpy receiver")
|
||||
AreSlicesEqual(t, truth, emptyReceiver, "Wrong cumsum returned with empty receiver")
|
||||
|
||||
}
|
||||
|
||||
|
@@ -553,7 +553,7 @@ func (l *directedLocalMover) deltaQ(n graph.Node) (deltaQ float64, dst int, src
|
||||
m := l.m
|
||||
gamma := l.resolution
|
||||
|
||||
// Find communites connected to n.
|
||||
// Find communities connected to n.
|
||||
connected := make(set.Ints)
|
||||
// The following for loop is equivalent to:
|
||||
//
|
||||
|
@@ -500,7 +500,7 @@ func (l *undirectedLocalMover) deltaQ(n graph.Node) (deltaQ float64, dst int, sr
|
||||
m2 := l.m2
|
||||
gamma := l.resolution
|
||||
|
||||
// Find communites connected to n.
|
||||
// Find communities connected to n.
|
||||
connected := make(set.Ints)
|
||||
// The following for loop is equivalent to:
|
||||
//
|
||||
|
@@ -73,7 +73,7 @@ func Duplication(dst UndirectedMutator, n int, delta, alpha, sigma float64, src
|
||||
// Loop until we have connectivity
|
||||
// into the rest of the graph.
|
||||
for {
|
||||
// Add edges to parent's neigbours.
|
||||
// Add edges to parent's neighbours.
|
||||
to := dst.From(u)
|
||||
sort.Sort(ordered.ByID(to))
|
||||
for _, v := range to {
|
||||
|
@@ -72,7 +72,7 @@ var aStarTests = []struct {
|
||||
g: func() graph.Graph {
|
||||
tg := internal.NewGrid(10, 10, true)
|
||||
|
||||
// Create a partial "wall" accross the middle
|
||||
// Create a partial "wall" across the middle
|
||||
// row with a gap at the left-hand end.
|
||||
tg.Set(4, 1, false)
|
||||
tg.Set(4, 2, false)
|
||||
@@ -94,7 +94,7 @@ var aStarTests = []struct {
|
||||
g: func() graph.Graph {
|
||||
tg := internal.NewGrid(10, 10, true)
|
||||
|
||||
// Create a partial "wall" accross the middle
|
||||
// Create a partial "wall" across the middle
|
||||
// row with a gap at the left-hand end.
|
||||
tg.Set(4, 1, false)
|
||||
tg.Set(4, 2, false)
|
||||
|
@@ -85,7 +85,7 @@ func TestPathExistsInUndirected(t *testing.T) {
|
||||
|
||||
got := PathExistsIn(g, simple.Node(test.from), simple.Node(test.to))
|
||||
if got != test.want {
|
||||
t.Errorf("unexpected result for path existance in test %d: got:%t want %t", i, got, test.want)
|
||||
t.Errorf("unexpected result for path existence in test %d: got:%t want %t", i, got, test.want)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -124,7 +124,7 @@ func TestPathExistsInDirected(t *testing.T) {
|
||||
|
||||
got := PathExistsIn(g, simple.Node(test.from), simple.Node(test.to))
|
||||
if got != test.want {
|
||||
t.Errorf("unexpected result for path existance in test %d: got:%t want %t", i, got, test.want)
|
||||
t.Errorf("unexpected result for path existence in test %d: got:%t want %t", i, got, test.want)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -583,7 +583,7 @@ func constructQK(kind string, m, n, k int, a []float64, lda int, tau []float64)
|
||||
}
|
||||
blas64.Ger(-tau[i], vVec, vVec, h)
|
||||
copy(qCopy.Data, q.Data)
|
||||
// Mulitply q by the new h
|
||||
// Multiply q by the new h.
|
||||
switch kind {
|
||||
case "QR", "RQ":
|
||||
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qCopy, h, 0, q)
|
||||
@@ -608,7 +608,7 @@ func checkBidiagonal(t *testing.T, m, n, nb int, a []float64, lda int, d, e, tau
|
||||
qMat := constructQPBidiagonal(lapack.ApplyQ, m, n, nb, a, lda, tauQ)
|
||||
pMat := constructQPBidiagonal(lapack.ApplyP, m, n, nb, a, lda, tauP)
|
||||
|
||||
// Compute Q^T * A * P
|
||||
// Compute Q^T * A * P.
|
||||
aMat := blas64.General{
|
||||
Rows: m,
|
||||
Cols: n,
|
||||
|
@@ -287,7 +287,7 @@ func (s *SymDense) InverseCholesky(chol *Cholesky) error {
|
||||
}
|
||||
|
||||
// SymRankOne performs a rank-1 update of the original matrix A and refactorizes
|
||||
// its Cholesky factorization, storing the result into the reciever. That is, if
|
||||
// its Cholesky factorization, storing the result into the receiver. That is, if
|
||||
// in the original Cholesky factorization
|
||||
// U^T * U = A,
|
||||
// in the updated factorization
|
||||
|
@@ -46,7 +46,7 @@ func gammaIncInv(a, y float64) float64 {
|
||||
|
||||
// Also, after we generate a small interval by bisection above, false
|
||||
// position will do a large step from an interval of width ~1e-4 to ~1e-14
|
||||
// in one step (a=10, x=0.05, but similiar for other values).
|
||||
// in one step (a=10, x=0.05, but similar for other values).
|
||||
result, bestX, _, errEst := falsePosition(lo, hi, flo, fhi, 2*machEp, 2*machEp, 1e-2*a, gammaInc, params)
|
||||
if result == fSolveMaxIterations && errEst > allowedATol+allowedRTol*math.Abs(bestX) {
|
||||
bestX = math.NaN()
|
||||
|
@@ -235,7 +235,7 @@ func Zairy(ZR, ZI float64, ID, KODE int) (AIR, AII float64, NZ int) {
|
||||
}
|
||||
AA = AZ * AZ
|
||||
if AA < TOL/AZ {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
TRM1R = CONER
|
||||
TRM1I = CONEI
|
||||
@@ -272,12 +272,12 @@ func Zairy(ZR, ZI float64, ID, KODE int) (AIR, AII float64, NZ int) {
|
||||
D2 = D2 + BK
|
||||
AD = math.Min(D1, D2)
|
||||
if ATRM < TOL*AD {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
AK = AK + 18.0E0
|
||||
BK = BK + 18.0E0
|
||||
}
|
||||
Fourty:
|
||||
Forty:
|
||||
if ID == 1 {
|
||||
goto Fifty
|
||||
}
|
||||
@@ -539,7 +539,7 @@ func Zbknu(ZR, ZI, FNU float64, KODE, N int, YR, YI []float64, NZ int, TOL, ELIM
|
||||
* CYI(2)
|
||||
*/
|
||||
|
||||
// TOOD(btracey): Find which of these are inputs/outputs/both and clean up
|
||||
// TODO(btracey): Find which of these are inputs/outputs/both and clean up
|
||||
// the function call.
|
||||
// YR and YI have length n (but n+1 with better indexing)
|
||||
var AA, AK, ASCLE, A1, A2, BB, BK, CAZ,
|
||||
@@ -641,7 +641,7 @@ Ten:
|
||||
T2 = math.Exp(-dgamln(A2, IDUM))
|
||||
T1 = 1.0E0 / (T2 * FC)
|
||||
if math.Abs(DNU) > 0.1E0 {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
|
||||
// SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU).
|
||||
@@ -658,7 +658,7 @@ Ten:
|
||||
Thirty:
|
||||
G1 = -S
|
||||
goto Fifty
|
||||
Fourty:
|
||||
Forty:
|
||||
G1 = (T1 - T2) / (DNU + DNU)
|
||||
Fifty:
|
||||
G2 = (T1 + T2) * 0.5E0
|
||||
@@ -1352,7 +1352,7 @@ Twenty:
|
||||
YI[I] = CSI
|
||||
NZ = NZ - 1
|
||||
if IC == KK-1 {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
IC = KK
|
||||
continue
|
||||
@@ -1371,7 +1371,7 @@ Twenty:
|
||||
NZ = N - 1
|
||||
}
|
||||
goto FourtyFive
|
||||
Fourty:
|
||||
Forty:
|
||||
NZ = KK - 2
|
||||
FourtyFive:
|
||||
for I = 1; I <= NZ; I++ {
|
||||
@@ -1452,7 +1452,7 @@ Ten:
|
||||
YR[i] = real(v)
|
||||
YI[i] = imag(v)
|
||||
}
|
||||
goto Fourty
|
||||
goto Forty
|
||||
Twenty:
|
||||
if AZ < RL {
|
||||
goto Thirty
|
||||
@@ -1462,14 +1462,14 @@ Twenty:
|
||||
if NW < 0 {
|
||||
goto Eighty
|
||||
}
|
||||
goto Fourty
|
||||
goto Forty
|
||||
Thirty:
|
||||
// MILLER ALGORITHM NORMALIZED BY THE SERIES FOR THE I FUNCTION
|
||||
ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL = Zmlri(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL)
|
||||
if NW < 0 {
|
||||
goto Eighty
|
||||
}
|
||||
Fourty:
|
||||
Forty:
|
||||
// ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION.
|
||||
ZNR, ZNI, FNU, KODE, _, CYR, CYI, NW, TOL, ELIM, ALIM = Zbknu(ZNR, ZNI, FNU, KODE, 1, CYR, CYI, NW, TOL, ELIM, ALIM)
|
||||
if NW != 0 {
|
||||
@@ -1796,7 +1796,7 @@ Twenty:
|
||||
I = I + 1
|
||||
K = 0
|
||||
if INU < IAZ {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
// COMPUTE RELATIVE TRUNCATION ERROR FOR RATIOS.
|
||||
P1R = ZEROR
|
||||
@@ -1825,7 +1825,7 @@ Twenty:
|
||||
continue
|
||||
}
|
||||
if ITIME == 2 {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
ACK = cmplx.Abs(complex(CKR, CKI))
|
||||
FLAM = ACK + math.Sqrt(ACK*ACK-1.0E0)
|
||||
@@ -1835,7 +1835,7 @@ Twenty:
|
||||
ITIME = 2
|
||||
}
|
||||
goto OneTen
|
||||
Fourty:
|
||||
Forty:
|
||||
// BACKWARD RECURRENCE AND SUM NORMALIZING RELATION.
|
||||
K = K + 1
|
||||
KK = max(I+IAZ, K+INU)
|
||||
@@ -1957,7 +1957,7 @@ OneTen:
|
||||
// condition |z| <= 2*sqrt(fnu+1) was violated and the computation must be
|
||||
// completed in another routine with n -= abs(nz).
|
||||
func Zseri(z complex128, fnu float64, kode, n int, y []complex128, tol, elim, alim float64) (nz int) {
|
||||
// TOOD(btracey): The original fortran line is "ARM = 1.0D+3*D1MACH(1)". Evidently, in Fortran
|
||||
// TODO(btracey): The original fortran line is "ARM = 1.0D+3*D1MACH(1)". Evidently, in Fortran
|
||||
// this is interpreted as one to the power of +3*D1MACH(1). While it is possible
|
||||
// this was intentional, it seems unlikely.
|
||||
arm := 1000 * dmach[1]
|
||||
|
@@ -226,7 +226,7 @@ func zairyOrig(ZR, ZI float64, ID, KODE int) (AIR, AII float64, NZ int) {
|
||||
}
|
||||
AA = AZ * AZ
|
||||
if AA < TOL/AZ {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
TRM1R = CONER
|
||||
TRM1I = CONEI
|
||||
@@ -263,12 +263,12 @@ func zairyOrig(ZR, ZI float64, ID, KODE int) (AIR, AII float64, NZ int) {
|
||||
D2 = D2 + BK
|
||||
AD = dmin(D1, D2)
|
||||
if ATRM < TOL*AD {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
AK = AK + 18.0E0
|
||||
BK = BK + 18.0E0
|
||||
}
|
||||
Fourty:
|
||||
Forty:
|
||||
if ID == 1 {
|
||||
goto Fifty
|
||||
}
|
||||
@@ -530,7 +530,7 @@ func zbknuOrig(ZR, ZI, FNU float64, KODE, N int, YR, YI []float64, NZ int, TOL,
|
||||
* CYI(2)
|
||||
*/
|
||||
|
||||
// TOOD(btracey): Find which of these are inputs/outputs/both and clean up
|
||||
// TODO(btracey): Find which of these are inputs/outputs/both and clean up
|
||||
// the function call.
|
||||
// YR and YI have length n (but n+1 with better indexing)
|
||||
var AA, AK, ASCLE, A1, A2, BB, BK, CAZ,
|
||||
@@ -623,7 +623,7 @@ Ten:
|
||||
T2 = dexp(-dgamln(A2, IDUM))
|
||||
T1 = 1.0E0 / (T2 * FC)
|
||||
if dabs(DNU) > 0.1E0 {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
|
||||
// SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU).
|
||||
@@ -640,7 +640,7 @@ Ten:
|
||||
Thirty:
|
||||
G1 = -S
|
||||
goto Fifty
|
||||
Fourty:
|
||||
Forty:
|
||||
G1 = (T1 - T2) / (DNU + DNU)
|
||||
Fifty:
|
||||
G2 = (T1 + T2) * 0.5E0
|
||||
@@ -1325,7 +1325,7 @@ Twenty:
|
||||
YI[I] = CSI
|
||||
NZ = NZ - 1
|
||||
if IC == KK-1 {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
IC = KK
|
||||
continue
|
||||
@@ -1344,7 +1344,7 @@ Twenty:
|
||||
NZ = N - 1
|
||||
}
|
||||
goto FourtyFive
|
||||
Fourty:
|
||||
Forty:
|
||||
NZ = KK - 2
|
||||
FourtyFive:
|
||||
for I = 1; I <= NZ; I++ {
|
||||
@@ -1413,7 +1413,7 @@ func zacaiOrig(ZR, ZI, FNU float64, KODE, MR, N int, YR, YI []float64, NZ int, R
|
||||
Ten:
|
||||
// POWER SERIES FOR THE I FUNCTION.
|
||||
ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL, ELIM, ALIM = zseriOrig(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL, ELIM, ALIM)
|
||||
goto Fourty
|
||||
goto Forty
|
||||
Twenty:
|
||||
if AZ < RL {
|
||||
goto Thirty
|
||||
@@ -1423,14 +1423,14 @@ Twenty:
|
||||
if NW < 0 {
|
||||
goto Eighty
|
||||
}
|
||||
goto Fourty
|
||||
goto Forty
|
||||
Thirty:
|
||||
// MILLER ALGORITHM NORMALIZED BY THE SERIES FOR THE I FUNCTION
|
||||
ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL = zmlriOrig(ZNR, ZNI, FNU, KODE, NN, YR, YI, NW, TOL)
|
||||
if NW < 0 {
|
||||
goto Eighty
|
||||
}
|
||||
Fourty:
|
||||
Forty:
|
||||
// ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION.
|
||||
ZNR, ZNI, FNU, KODE, _, CYR, CYI, NW, TOL, ELIM, ALIM = zbknuOrig(ZNR, ZNI, FNU, KODE, 1, CYR, CYI, NW, TOL, ELIM, ALIM)
|
||||
if NW != 0 {
|
||||
@@ -1746,7 +1746,7 @@ Twenty:
|
||||
I = I + 1
|
||||
K = 0
|
||||
if INU < IAZ {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
// COMPUTE RELATIVE TRUNCATION ERROR FOR RATIOS.
|
||||
P1R = ZEROR
|
||||
@@ -1775,7 +1775,7 @@ Twenty:
|
||||
continue
|
||||
}
|
||||
if ITIME == 2 {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
ACK = zabs(complex(CKR, CKI))
|
||||
FLAM = ACK + dsqrt(ACK*ACK-1.0E0)
|
||||
@@ -1785,7 +1785,7 @@ Twenty:
|
||||
ITIME = 2
|
||||
}
|
||||
goto OneTen
|
||||
Fourty:
|
||||
Forty:
|
||||
// BACKWARD RECURRENCE AND SUM NORMALIZING RELATION.
|
||||
K = K + 1
|
||||
KK = max0(I+IAZ, K+INU)
|
||||
@@ -1964,7 +1964,7 @@ Twenty:
|
||||
AK1R = AK1R - ZR
|
||||
}
|
||||
if AK1R > (-ELIM) {
|
||||
goto Fourty
|
||||
goto Forty
|
||||
}
|
||||
Thirty:
|
||||
NZ = NZ + 1
|
||||
@@ -1978,7 +1978,7 @@ Thirty:
|
||||
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
|
||||
}
|
||||
goto Twenty
|
||||
Fourty:
|
||||
Forty:
|
||||
if AK1R > (-ALIM) {
|
||||
goto Fifty
|
||||
}
|
||||
|
@@ -46,7 +46,7 @@ const (
|
||||
// errEst: error estimation
|
||||
func falsePosition(x1, x2, f1, f2, absErr, relErr, bisectTil float64, f objectiveFunc, fExtra []float64) (fSolveResult, float64, float64, float64) {
|
||||
// The false position steps are either unmodified, or modified with the
|
||||
// Anderson-Bjorck method as appropiate. Theoretically, this has a "speed of
|
||||
// Anderson-Bjorck method as appropriate. Theoretically, this has a "speed of
|
||||
// convergence" of 1.7 (bisection is 1, Newton is 2).
|
||||
// Note that this routine was designed initially to work with gammaincinv, so
|
||||
// it may not be tuned right for other problems. Don't use it blindly.
|
||||
|
@@ -141,7 +141,7 @@ func simplex(initialBasic []int, c []float64, A mat.Matrix, b []float64, tol flo
|
||||
basicIdxs = make([]int, len(initialBasic))
|
||||
copy(basicIdxs, initialBasic)
|
||||
} else {
|
||||
// No inital basis supplied. Solve the PhaseI problem.
|
||||
// No initial basis supplied. Solve the PhaseI problem.
|
||||
basicIdxs, ab, xb, err = findInitialBasic(A, b)
|
||||
if err != nil {
|
||||
return math.NaN(), nil, nil, err
|
||||
|
@@ -24,7 +24,7 @@ type GlobalMethod interface {
|
||||
Done()
|
||||
}
|
||||
|
||||
// Global uses a global optimizer to search for the gloabl minimum of a
|
||||
// Global uses a global optimizer to search for the global minimum of a
|
||||
// function. A maximization problem can be transformed into a
|
||||
// minimization problem by multiplying the function by -1.
|
||||
//
|
||||
|
@@ -70,7 +70,7 @@ type Statuser interface {
|
||||
// dir_k starting at the most recent location x_k, i.e., it tries to minimize
|
||||
// the function
|
||||
// φ(step) := f(x_k + step * dir_k) where step > 0.
|
||||
// Typically, a Linesearcher will be used in conjuction with LinesearchMethod
|
||||
// Typically, a Linesearcher will be used in conjunction with LinesearchMethod
|
||||
// for performing gradient-based optimization through sequential line searches.
|
||||
type Linesearcher interface {
|
||||
// Init initializes the Linesearcher and a new line search. Value and
|
||||
@@ -100,7 +100,7 @@ type Linesearcher interface {
|
||||
|
||||
// NextDirectioner implements a strategy for computing a new line search
|
||||
// direction at each major iteration. Typically, a NextDirectioner will be
|
||||
// used in conjuction with LinesearchMethod for performing gradient-based
|
||||
// used in conjunction with LinesearchMethod for performing gradient-based
|
||||
// optimization through sequential line searches.
|
||||
type NextDirectioner interface {
|
||||
// InitDirection initializes the NextDirectioner at the given starting location,
|
||||
|
@@ -184,7 +184,7 @@ type Settings struct {
|
||||
//
|
||||
// If f < f_best and
|
||||
// f_best - f > FunctionConverge.Relative * maxabs(f, f_best) + FunctionConverge.Absolute
|
||||
// then a significant decrease has occured, and f_best is updated.
|
||||
// then a significant decrease has occurred, and f_best is updated.
|
||||
//
|
||||
// If there is no significant decrease for FunctionConverge.Iterations
|
||||
// major iterations, FunctionConvergence status is returned.
|
||||
|
@@ -9,7 +9,7 @@ import (
|
||||
"math/rand"
|
||||
)
|
||||
|
||||
// Categorical is an extension of the Bernouilli distribution where x takes
|
||||
// Categorical is an extension of the Bernoulli distribution where x takes
|
||||
// values {0, 1, ..., len(w)-1} where w is the weight vector. Categorical must
|
||||
// be initialized with NewCategorical.
|
||||
type Categorical struct {
|
||||
|
@@ -23,7 +23,7 @@ type MHProposal interface {
|
||||
ConditionalLogProb(x, y []float64) (prob float64)
|
||||
|
||||
// ConditionalRand generates a new random location conditioned being at the
|
||||
// location y. If the first arguement is nil, a new slice is allocated and
|
||||
// location y. If the first argument is nil, a new slice is allocated and
|
||||
// returned. Otherwise, the random location is stored in-place into the first
|
||||
// argument, and ConditionalRand will panic if the input slice lengths differ.
|
||||
ConditionalRand(x, y []float64) []float64
|
||||
@@ -114,7 +114,7 @@ func (m MetropolisHastingser) Sample(batch *mat.Dense) {
|
||||
|
||||
// MetropolisHastings generates rows(batch) samples using the Metropolis Hastings
|
||||
// algorithm (http://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm),
|
||||
// with the given target and proposal distributions, starting at the intial location
|
||||
// with the given target and proposal distributions, starting at the initial location
|
||||
// and storing the results in-place into samples. If src != nil, it will be used to generate random
|
||||
// numbers, otherwise rand.Float64 will be used.
|
||||
//
|
||||
@@ -204,7 +204,7 @@ func (p *ProposalNormal) ConditionalLogProb(x, y []float64) (prob float64) {
|
||||
}
|
||||
|
||||
// ConditionalRand generates a new random location conditioned being at the
|
||||
// location y. If the first arguement is nil, a new slice is allocated and
|
||||
// location y. If the first argument is nil, a new slice is allocated and
|
||||
// returned. Otherwise, the random location is stored in-place into the first
|
||||
// argument, and ConditionalRand will panic if the input slice lengths differ or
|
||||
// if they are not equal to the dimension of the covariance matrix.
|
||||
|
@@ -333,7 +333,7 @@ func (m MetropolisHastingser) Sample(batch []float64) {
|
||||
|
||||
// MetropolisHastings generates len(batch) samples using the Metropolis Hastings
|
||||
// algorithm (http://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm),
|
||||
// with the given target and proposal distributions, starting at the intial location
|
||||
// with the given target and proposal distributions, starting at the initial location
|
||||
// and storing the results in-place into samples. If src != nil, it will be used to generate random
|
||||
// numbers, otherwise rand.Float64 will be used.
|
||||
//
|
||||
|
@@ -138,7 +138,7 @@ var (
|
||||
|
||||
// Dimensions represent the dimensionality of the unit in powers
|
||||
// of that dimension. If a key is not present, the power of that
|
||||
// dimension is zero. Dimensions is used in conjuction with New.
|
||||
// dimension is zero. Dimensions is used in conjunction with New.
|
||||
type Dimensions map[Dimension]int
|
||||
|
||||
func (d Dimensions) String() string {
|
||||
@@ -253,7 +253,7 @@ func DimensionsMatch(a, b Uniter) bool {
|
||||
return true
|
||||
}
|
||||
|
||||
// Add adds the function argument to the reciever. Panics if the units of
|
||||
// Add adds the function argument to the receiver. Panics if the units of
|
||||
// the receiver and the argument don't match.
|
||||
func (u *Unit) Add(uniter Uniter) *Unit {
|
||||
a := uniter.Unit()
|
||||
|
Reference in New Issue
Block a user