mirror of
https://github.com/gonum/gonum.git
synced 2025-10-27 17:21:18 +08:00
@@ -4,7 +4,11 @@
|
|||||||
|
|
||||||
package r3
|
package r3
|
||||||
|
|
||||||
import "math"
|
import (
|
||||||
|
"math"
|
||||||
|
|
||||||
|
"gonum.org/v1/gonum/num/quat"
|
||||||
|
)
|
||||||
|
|
||||||
// Vec is a 3D vector.
|
// Vec is a 3D vector.
|
||||||
type Vec struct {
|
type Vec struct {
|
||||||
@@ -49,6 +53,11 @@ func (p Vec) Cross(q Vec) Vec {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Rotate returns a new vector, rotated by alpha around the provided axis.
|
||||||
|
func (p Vec) Rotate(alpha float64, axis Vec) Vec {
|
||||||
|
return NewRotation(alpha, axis).Rotate(p)
|
||||||
|
}
|
||||||
|
|
||||||
// Norm returns the Euclidean norm of p
|
// Norm returns the Euclidean norm of p
|
||||||
// |p| = sqrt(p_x^2 + p_y^2 + p_z^2).
|
// |p| = sqrt(p_x^2 + p_y^2 + p_z^2).
|
||||||
func Norm(p Vec) float64 {
|
func Norm(p Vec) float64 {
|
||||||
@@ -79,3 +88,50 @@ func Cos(p, q Vec) float64 {
|
|||||||
type Box struct {
|
type Box struct {
|
||||||
Min, Max Vec
|
Min, Max Vec
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// TODO: possibly useful additions to the current rotation API:
|
||||||
|
// - create rotations from Euler angles (NewRotationFromEuler?)
|
||||||
|
// - create rotations from rotation matrices (NewRotationFromMatrix?)
|
||||||
|
// - return the equivalent Euler angles from a Rotation
|
||||||
|
// - return the equivalent rotation matrix from a Rotation
|
||||||
|
//
|
||||||
|
// Euler angles have issues (see [1] for a discussion).
|
||||||
|
// We should think carefully before adding them in.
|
||||||
|
// [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
|
||||||
|
|
||||||
|
// Rotation describes a rotation in space.
|
||||||
|
type Rotation quat.Number
|
||||||
|
|
||||||
|
// NewRotation creates a rotation by alpha, around axis.
|
||||||
|
func NewRotation(alpha float64, axis Vec) Rotation {
|
||||||
|
if alpha == 0 {
|
||||||
|
return Rotation{Real: 1}
|
||||||
|
}
|
||||||
|
q := raise(axis)
|
||||||
|
sin, cos := math.Sincos(0.5 * alpha)
|
||||||
|
q = quat.Scale(sin/quat.Abs(q), q)
|
||||||
|
q.Real += cos
|
||||||
|
if len := quat.Abs(q); len != 1 {
|
||||||
|
q = quat.Scale(1/len, q)
|
||||||
|
}
|
||||||
|
|
||||||
|
return Rotation(q)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Rotate returns the rotated vector according to the definition of rot.
|
||||||
|
func (r Rotation) Rotate(p Vec) Vec {
|
||||||
|
if r.isIdentity() {
|
||||||
|
return p
|
||||||
|
}
|
||||||
|
qq := quat.Number(r)
|
||||||
|
pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq))
|
||||||
|
return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (r Rotation) isIdentity() bool {
|
||||||
|
return r == Rotation{Real: 1}
|
||||||
|
}
|
||||||
|
|
||||||
|
func raise(p Vec) quat.Number {
|
||||||
|
return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z}
|
||||||
|
}
|
||||||
|
|||||||
@@ -236,6 +236,32 @@ func TestCos(t *testing.T) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestRotate(t *testing.T) {
|
||||||
|
const tol = 1e-14
|
||||||
|
for _, test := range []struct {
|
||||||
|
v, axis Vec
|
||||||
|
alpha float64
|
||||||
|
want Vec
|
||||||
|
}{
|
||||||
|
{Vec{1, 0, 0}, Vec{1, 0, 0}, math.Pi / 2, Vec{1, 0, 0}},
|
||||||
|
{Vec{1, 0, 0}, Vec{1, 0, 0}, 0, Vec{1, 0, 0}},
|
||||||
|
{Vec{1, 0, 0}, Vec{1, 0, 0}, 2 * math.Pi, Vec{1, 0, 0}},
|
||||||
|
{Vec{1, 0, 0}, Vec{0, 0, 0}, math.Pi / 2, Vec{math.NaN(), math.NaN(), math.NaN()}},
|
||||||
|
{Vec{1, 0, 0}, Vec{0, 1, 0}, math.Pi / 2, Vec{0, 0, -1}},
|
||||||
|
{Vec{1, 0, 0}, Vec{0, 1, 0}, math.Pi, Vec{-1, 0, 0}},
|
||||||
|
{Vec{2, 0, 0}, Vec{0, 1, 0}, math.Pi, Vec{-2, 0, 0}},
|
||||||
|
{Vec{1, 2, 3}, Vec{1, 1, 1}, 2. / 3. * math.Pi, Vec{3, 1, 2}},
|
||||||
|
} {
|
||||||
|
got := test.v.Rotate(test.alpha, test.axis)
|
||||||
|
if !vecApproxEqual(got, test.want, tol) {
|
||||||
|
t.Errorf(
|
||||||
|
"rotate(%v, %v, %v)= %v, want=%v",
|
||||||
|
test.v, test.alpha, test.axis, got, test.want,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
func vecIsNaN(v Vec) bool {
|
func vecIsNaN(v Vec) bool {
|
||||||
return math.IsNaN(v.X) && math.IsNaN(v.Y) && math.IsNaN(v.Z)
|
return math.IsNaN(v.X) && math.IsNaN(v.Y) && math.IsNaN(v.Z)
|
||||||
}
|
}
|
||||||
@@ -250,3 +276,12 @@ func vecEqual(a, b Vec) bool {
|
|||||||
}
|
}
|
||||||
return a == b
|
return a == b
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func vecApproxEqual(a, b Vec, tol float64) bool {
|
||||||
|
if vecIsNaNAny(a) || vecIsNaNAny(b) {
|
||||||
|
return vecIsNaN(a) && vecIsNaN(b)
|
||||||
|
}
|
||||||
|
return scalar.EqualWithinAbs(a.X, b.X, tol) &&
|
||||||
|
scalar.EqualWithinAbs(a.Y, b.Y, tol) &&
|
||||||
|
scalar.EqualWithinAbs(a.Z, b.Z, tol)
|
||||||
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user