spatial/r3: implement Rotate

Updates gonum/gonum#1513.
This commit is contained in:
Sebastien Binet
2020-12-01 10:52:18 +01:00
committed by GitHub
parent 8d1ffe1e87
commit 9c06200335
2 changed files with 92 additions and 1 deletions

View File

@@ -4,7 +4,11 @@
package r3
import "math"
import (
"math"
"gonum.org/v1/gonum/num/quat"
)
// Vec is a 3D vector.
type Vec struct {
@@ -49,6 +53,11 @@ func (p Vec) Cross(q Vec) Vec {
}
}
// Rotate returns a new vector, rotated by alpha around the provided axis.
func (p Vec) Rotate(alpha float64, axis Vec) Vec {
return NewRotation(alpha, axis).Rotate(p)
}
// Norm returns the Euclidean norm of p
// |p| = sqrt(p_x^2 + p_y^2 + p_z^2).
func Norm(p Vec) float64 {
@@ -79,3 +88,50 @@ func Cos(p, q Vec) float64 {
type Box struct {
Min, Max Vec
}
// TODO: possibly useful additions to the current rotation API:
// - create rotations from Euler angles (NewRotationFromEuler?)
// - create rotations from rotation matrices (NewRotationFromMatrix?)
// - return the equivalent Euler angles from a Rotation
// - return the equivalent rotation matrix from a Rotation
//
// Euler angles have issues (see [1] for a discussion).
// We should think carefully before adding them in.
// [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
// Rotation describes a rotation in space.
type Rotation quat.Number
// NewRotation creates a rotation by alpha, around axis.
func NewRotation(alpha float64, axis Vec) Rotation {
if alpha == 0 {
return Rotation{Real: 1}
}
q := raise(axis)
sin, cos := math.Sincos(0.5 * alpha)
q = quat.Scale(sin/quat.Abs(q), q)
q.Real += cos
if len := quat.Abs(q); len != 1 {
q = quat.Scale(1/len, q)
}
return Rotation(q)
}
// Rotate returns the rotated vector according to the definition of rot.
func (r Rotation) Rotate(p Vec) Vec {
if r.isIdentity() {
return p
}
qq := quat.Number(r)
pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq))
return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag}
}
func (r Rotation) isIdentity() bool {
return r == Rotation{Real: 1}
}
func raise(p Vec) quat.Number {
return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z}
}