mirror of
https://github.com/gonum/gonum.git
synced 2025-10-06 15:47:01 +08:00
@@ -4,7 +4,11 @@
|
||||
|
||||
package r3
|
||||
|
||||
import "math"
|
||||
import (
|
||||
"math"
|
||||
|
||||
"gonum.org/v1/gonum/num/quat"
|
||||
)
|
||||
|
||||
// Vec is a 3D vector.
|
||||
type Vec struct {
|
||||
@@ -49,6 +53,11 @@ func (p Vec) Cross(q Vec) Vec {
|
||||
}
|
||||
}
|
||||
|
||||
// Rotate returns a new vector, rotated by alpha around the provided axis.
|
||||
func (p Vec) Rotate(alpha float64, axis Vec) Vec {
|
||||
return NewRotation(alpha, axis).Rotate(p)
|
||||
}
|
||||
|
||||
// Norm returns the Euclidean norm of p
|
||||
// |p| = sqrt(p_x^2 + p_y^2 + p_z^2).
|
||||
func Norm(p Vec) float64 {
|
||||
@@ -79,3 +88,50 @@ func Cos(p, q Vec) float64 {
|
||||
type Box struct {
|
||||
Min, Max Vec
|
||||
}
|
||||
|
||||
// TODO: possibly useful additions to the current rotation API:
|
||||
// - create rotations from Euler angles (NewRotationFromEuler?)
|
||||
// - create rotations from rotation matrices (NewRotationFromMatrix?)
|
||||
// - return the equivalent Euler angles from a Rotation
|
||||
// - return the equivalent rotation matrix from a Rotation
|
||||
//
|
||||
// Euler angles have issues (see [1] for a discussion).
|
||||
// We should think carefully before adding them in.
|
||||
// [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
|
||||
|
||||
// Rotation describes a rotation in space.
|
||||
type Rotation quat.Number
|
||||
|
||||
// NewRotation creates a rotation by alpha, around axis.
|
||||
func NewRotation(alpha float64, axis Vec) Rotation {
|
||||
if alpha == 0 {
|
||||
return Rotation{Real: 1}
|
||||
}
|
||||
q := raise(axis)
|
||||
sin, cos := math.Sincos(0.5 * alpha)
|
||||
q = quat.Scale(sin/quat.Abs(q), q)
|
||||
q.Real += cos
|
||||
if len := quat.Abs(q); len != 1 {
|
||||
q = quat.Scale(1/len, q)
|
||||
}
|
||||
|
||||
return Rotation(q)
|
||||
}
|
||||
|
||||
// Rotate returns the rotated vector according to the definition of rot.
|
||||
func (r Rotation) Rotate(p Vec) Vec {
|
||||
if r.isIdentity() {
|
||||
return p
|
||||
}
|
||||
qq := quat.Number(r)
|
||||
pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq))
|
||||
return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag}
|
||||
}
|
||||
|
||||
func (r Rotation) isIdentity() bool {
|
||||
return r == Rotation{Real: 1}
|
||||
}
|
||||
|
||||
func raise(p Vec) quat.Number {
|
||||
return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z}
|
||||
}
|
||||
|
Reference in New Issue
Block a user