diff --git a/lapack/testlapack/dlanv2.go b/lapack/testlapack/dlanv2.go index 8d69f0b2..98403a5c 100644 --- a/lapack/testlapack/dlanv2.go +++ b/lapack/testlapack/dlanv2.go @@ -61,17 +61,24 @@ func dlanv2Test(t *testing.T, impl Dlanv2er, a, b, c, d float64) { mat := fmt.Sprintf("[%v %v; %v %v]", a, b, c, d) if cc == 0 { + // The eigenvalues are real, so check that the imaginary parts + // are zero. if rt1i != 0 || rt2i != 0 { t.Errorf("Unexpected complex eigenvalues for %v", mat) } } else { + // The eigenvalues are complex, so check that documented + // conditions hold. if aa != dd { t.Errorf("Diagonal elements not equal for %v: got [%v %v]", mat, aa, dd) } if bb*cc >= 0 { t.Errorf("Non-diagonal elements have the same sign for %v: got [%v %v]", mat, bb, cc) } else { + // Compute the absolute value of the imaginary part. im := math.Sqrt(-bb * cc) + // Check that ±im is close to one of the returned + // imaginary parts. if math.Abs(rt1i-im) > 1e-14 && math.Abs(rt1i+im) > 1e-14 { t.Errorf("Unexpected imaginary part of eigenvalue for %v: got %v, want %v or %v", mat, rt1i, im, -im) } @@ -80,16 +87,19 @@ func dlanv2Test(t *testing.T, impl Dlanv2er, a, b, c, d float64) { } } } + // Check that the returned real parts are consistent. if rt1r != aa && rt1r != dd { t.Errorf("Unexpected real part of eigenvalue for %v: got %v, want %v or %v", mat, rt1r, aa, dd) } if rt2r != aa && rt2r != dd { t.Errorf("Unexpected real part of eigenvalue for %v: got %v, want %v or %v", mat, rt2r, aa, dd) } + // Check that the columns of the orthogonal matrix have unit norm. if math.Abs(math.Hypot(cs, sn)-1) > 1e-14 { t.Errorf("Unexpected unitary matrix for %v: got cs %v, sn %v", mat, cs, sn) } + // Re-compute the original matrix [a b; c d] from its factorization. gota := cs*(aa*cs-bb*sn) - sn*(cc*cs-dd*sn) gotb := cs*(aa*sn+bb*cs) - sn*(cc*sn+dd*cs) gotc := sn*(aa*cs-bb*sn) + cs*(cc*cs-dd*sn)