mat: add BandCholesky type

This commit is contained in:
Vladimir Chalupecky
2020-03-29 18:48:44 +02:00
committed by Vladimír Chalupecký
parent aea9ac7fa3
commit 971fc50f31
2 changed files with 435 additions and 2 deletions

View File

@@ -20,6 +20,11 @@ const (
var ( var (
_ Matrix = (*Cholesky)(nil) _ Matrix = (*Cholesky)(nil)
_ Symmetric = (*Cholesky)(nil) _ Symmetric = (*Cholesky)(nil)
_ Matrix = (*BandCholesky)(nil)
_ Symmetric = (*BandCholesky)(nil)
_ Banded = (*BandCholesky)(nil)
_ SymBanded = (*BandCholesky)(nil)
) )
// Cholesky is a symmetric positive definite matrix represented by its // Cholesky is a symmetric positive definite matrix represented by its
@@ -100,7 +105,7 @@ func (c *Cholesky) At(i, j int) float64 {
return val return val
} }
// T returns the the receiver, the transpose of a symmetric matrix. // T returns the receiver, the transpose of a symmetric matrix.
func (c *Cholesky) T() Matrix { func (c *Cholesky) T() Matrix {
return c return c
} }
@@ -264,7 +269,7 @@ func (a *Cholesky) SolveCholTo(dst *Dense, b *Cholesky) error {
return nil return nil
} }
// SolveVecTo finds the vector X that solves A * x = b where A is represented // SolveVecTo finds the vector x that solves A * x = b where A is represented
// by the Cholesky decomposition. The result is stored in-place into // by the Cholesky decomposition. The result is stored in-place into
// dst. // dst.
func (c *Cholesky) SolveVecTo(dst *VecDense, b Vector) error { func (c *Cholesky) SolveVecTo(dst *VecDense, b Vector) error {
@@ -697,3 +702,214 @@ func (c *Cholesky) SymRankOne(orig *Cholesky, alpha float64, x Vector) (ok bool)
func (c *Cholesky) valid() bool { func (c *Cholesky) valid() bool {
return c.chol != nil && !c.chol.IsEmpty() return c.chol != nil && !c.chol.IsEmpty()
} }
// BandCholesky is a symmetric positive-definite band matrix represented by its
// Cholesky decomposition.
//
// Note that this matrix representation is useful for certain operations, in
// particular finding solutions to linear equations. It is very inefficient at
// other operations, in particular At is slow.
//
// BandCholesky methods may only be called on a value that has been successfully
// initialized by a call to Factorize that has returned true. Calls to methods
// of an unsuccessful Cholesky factorization will panic.
type BandCholesky struct {
// The chol pointer must never be retained as a pointer outside the Cholesky
// struct, either by returning chol outside the struct or by setting it to
// a pointer coming from outside. The same prohibition applies to the data
// slice within chol.
chol *TriBandDense
cond float64
}
// Factorize calculates the Cholesky decomposition of the matrix A and returns
// whether the matrix is positive definite. If Factorize returns false, the
// factorization must not be used.
func (ch *BandCholesky) Factorize(a SymBanded) (ok bool) {
n, k := a.SymBand()
if ch.chol == nil {
ch.chol = NewTriBandDense(n, k, Upper, nil)
} else {
ch.chol.Reset()
ch.chol.ReuseAsTriBand(n, k, Upper)
}
copySymBandIntoTriBand(ch.chol, a)
cSym := blas64.SymmetricBand{
Uplo: blas.Upper,
N: n,
K: k,
Data: ch.chol.RawTriBand().Data,
Stride: ch.chol.RawTriBand().Stride,
}
_, ok = lapack64.Pbtrf(cSym)
if !ok {
ch.Reset()
return false
}
work := getFloats(3*n, false)
iwork := getInts(n, false)
aNorm := lapack64.Lansb(CondNorm, cSym, work)
ch.cond = 1 / lapack64.Pbcon(cSym, aNorm, work, iwork)
putInts(iwork)
putFloats(work)
return true
}
// SolveTo finds the matrix X that solves A * X = B where A is represented by
// the Cholesky decomposition. The result is stored in-place into dst.
func (ch *BandCholesky) SolveTo(dst *Dense, b Matrix) error {
if !ch.valid() {
panic(badCholesky)
}
br, bc := b.Dims()
if br != ch.chol.mat.N {
panic(ErrShape)
}
dst.reuseAsNonZeroed(br, bc)
if b != dst {
dst.Copy(b)
}
lapack64.Pbtrs(ch.chol.mat, dst.mat)
if ch.cond > ConditionTolerance {
return Condition(ch.cond)
}
return nil
}
// SolveVecTo finds the vector x that solves A * x = b where A is represented by
// the Cholesky decomposition. The result is stored in-place into dst.
func (ch *BandCholesky) SolveVecTo(dst *VecDense, b Vector) error {
if !ch.valid() {
panic(badCholesky)
}
n := ch.chol.mat.N
if br, bc := b.Dims(); br != n || bc != 1 {
panic(ErrShape)
}
if b, ok := b.(RawVectorer); ok && dst != b {
dst.checkOverlap(b.RawVector())
}
dst.reuseAsNonZeroed(n)
if dst != b {
dst.CopyVec(b)
}
lapack64.Pbtrs(ch.chol.mat, dst.asGeneral())
if ch.cond > ConditionTolerance {
return Condition(ch.cond)
}
return nil
}
// Cond returns the condition number of the factorized matrix.
func (ch *BandCholesky) Cond() float64 {
if !ch.valid() {
panic(badCholesky)
}
return ch.cond
}
// Reset resets the factorization so that it can be reused as the receiver of
// a dimensionally restricted operation.
func (ch *BandCholesky) Reset() {
if ch.chol != nil {
ch.chol.Reset()
}
ch.cond = math.Inf(1)
}
// Dims returns the dimensions of the matrix.
func (ch *BandCholesky) Dims() (r, c int) {
if !ch.valid() {
panic(badCholesky)
}
r, c = ch.chol.Dims()
return r, c
}
// At returns the element at row i, column j.
func (ch *BandCholesky) At(i, j int) float64 {
if !ch.valid() {
panic(badCholesky)
}
n, k, _ := ch.chol.TriBand()
if uint(i) >= uint(n) {
panic(ErrRowAccess)
}
if uint(j) >= uint(n) {
panic(ErrColAccess)
}
if i > j {
i, j = j, i
}
if j-i > k {
return 0
}
var aij float64
for k := max(0, j-k); k <= i; k++ {
aij += ch.chol.at(k, i) * ch.chol.at(k, j)
}
return aij
}
// T returns the receiver, the transpose of a symmetric matrix.
func (ch *BandCholesky) T() Matrix {
return ch
}
// TBand returns the receiver, the transpose of a symmetric band matrix.
func (ch *BandCholesky) TBand() Banded {
return ch
}
// Symmetric implements the Symmetric interface and returns the number of rows
// in the matrix (this is also the number of columns).
func (ch *BandCholesky) Symmetric() int {
n, _ := ch.chol.Triangle()
return n
}
// Bandwidth returns the lower and upper bandwidth values for the matrix.
// The total bandwidth of the matrix is kl+ku+1.
func (ch *BandCholesky) Bandwidth() (kl, ku int) {
_, k, _ := ch.chol.TriBand()
return k, k
}
// SymBand returns the number of rows/columns in the matrix, and the size of the
// bandwidth. The total bandwidth of the matrix is 2*k+1.
func (ch *BandCholesky) SymBand() (n, k int) {
n, k, _ = ch.chol.TriBand()
return n, k
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for dimensionally restricted operations. The receiver can be emptied
// using Reset.
func (ch *BandCholesky) IsEmpty() bool {
return ch == nil || ch.chol.IsEmpty()
}
// Det returns the determinant of the matrix that has been factorized.
func (ch *BandCholesky) Det() float64 {
if !ch.valid() {
panic(badCholesky)
}
return math.Exp(ch.LogDet())
}
// LogDet returns the log of the determinant of the matrix that has been factorized.
func (ch *BandCholesky) LogDet() float64 {
if !ch.valid() {
panic(badCholesky)
}
var det float64
for i := 0; i < ch.chol.mat.N; i++ {
det += 2 * math.Log(ch.chol.mat.Data[i*ch.chol.mat.Stride])
}
return det
}
func (ch *BandCholesky) valid() bool {
return ch.chol != nil && !ch.chol.IsEmpty()
}

View File

@@ -5,6 +5,7 @@
package mat package mat
import ( import (
"fmt"
"math" "math"
"strconv" "strconv"
"testing" "testing"
@@ -707,3 +708,219 @@ func BenchmarkCholeskyInverseTo(b *testing.B) {
}) })
} }
} }
func TestBandCholeskySolveTo(t *testing.T) {
t.Parallel()
const (
nrhs = 4
tol = 1e-14
)
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{1, 2, 3, 5, 10} {
for _, k := range []int{0, 1, n / 2, n - 1} {
k := min(k, n-1)
a := NewSymBandDense(n, k, nil)
for i := 0; i < n; i++ {
a.SetSymBand(i, i, rnd.Float64()+float64(n))
for j := i + 1; j < min(i+k+1, n); j++ {
a.SetSymBand(i, j, rnd.Float64())
}
}
want := NewDense(n, nrhs, nil)
for i := 0; i < n; i++ {
for j := 0; j < nrhs; j++ {
want.Set(i, j, rnd.NormFloat64())
}
}
var b Dense
b.Mul(a, want)
for _, typ := range []SymBanded{a, (*basicSymBanded)(a)} {
name := fmt.Sprintf("Case n=%d,k=%d,type=%T,nrhs=%d", n, k, typ, nrhs)
var chol BandCholesky
ok := chol.Factorize(typ)
if !ok {
t.Fatalf("%v: Factorize failed", name)
}
var got Dense
err := chol.SolveTo(&got, &b)
if err != nil {
t.Errorf("%v: unexpected error from SolveTo: %v", name, err)
continue
}
var resid Dense
resid.Sub(want, &got)
diff := Norm(&resid, math.Inf(1))
if diff > tol {
t.Errorf("%v: unexpected solution; diff=%v", name, diff)
}
got.Copy(&b)
err = chol.SolveTo(&got, &got)
if err != nil {
t.Errorf("%v: unexpected error from SolveTo when dst==b: %v", name, err)
continue
}
resid.Sub(want, &got)
diff = Norm(&resid, math.Inf(1))
if diff > tol {
t.Errorf("%v: unexpected solution when dst==b; diff=%v", name, diff)
}
}
}
}
}
func TestBandCholeskySolveVecTo(t *testing.T) {
t.Parallel()
const tol = 1e-14
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{1, 2, 3, 5, 10} {
for _, k := range []int{0, 1, n / 2, n - 1} {
k := min(k, n-1)
a := NewSymBandDense(n, k, nil)
for i := 0; i < n; i++ {
a.SetSymBand(i, i, rnd.Float64()+float64(n))
for j := i + 1; j < min(i+k+1, n); j++ {
a.SetSymBand(i, j, rnd.Float64())
}
}
want := NewVecDense(n, nil)
for i := 0; i < n; i++ {
want.SetVec(i, rnd.NormFloat64())
}
var b VecDense
b.MulVec(a, want)
for _, typ := range []SymBanded{a, (*basicSymBanded)(a)} {
name := fmt.Sprintf("Case n=%d,k=%d,type=%T", n, k, typ)
var chol BandCholesky
ok := chol.Factorize(typ)
if !ok {
t.Fatalf("%v: Factorize failed", name)
}
var got VecDense
err := chol.SolveVecTo(&got, &b)
if err != nil {
t.Errorf("%v: unexpected error from SolveVecTo: %v", name, err)
continue
}
var resid VecDense
resid.SubVec(want, &got)
diff := Norm(&resid, math.Inf(1))
if diff > tol {
t.Errorf("%v: unexpected solution; diff=%v", name, diff)
}
got.CopyVec(&b)
err = chol.SolveVecTo(&got, &got)
if err != nil {
t.Errorf("%v: unexpected error from SolveVecTo when dst==b: %v", name, err)
continue
}
resid.SubVec(want, &got)
diff = Norm(&resid, math.Inf(1))
if diff > tol {
t.Errorf("%v: unexpected solution when dst==b; diff=%v", name, diff)
}
}
}
}
}
func TestBandCholeskyAt(t *testing.T) {
t.Parallel()
const tol = 1e-14
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{1, 2, 3, 5, 10} {
for _, k := range []int{0, 1, n / 2, n - 1} {
k := min(k, n-1)
name := fmt.Sprintf("Case n=%d,k=%d", n, k)
a := NewSymBandDense(n, k, nil)
for i := 0; i < n; i++ {
a.SetSymBand(i, i, rnd.Float64()+float64(n))
for j := i + 1; j < min(i+k+1, n); j++ {
a.SetSymBand(i, j, rnd.Float64())
}
}
var chol BandCholesky
ok := chol.Factorize(a)
if !ok {
t.Fatalf("%v: Factorize failed", name)
}
resid := NewDense(n, n, nil)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
resid.Set(i, j, math.Abs(a.At(i, j)-chol.At(i, j)))
}
}
diff := Norm(resid, math.Inf(1))
if diff > tol {
t.Errorf("%v: unexpected result; diff=%v, want<=%v", name, diff, tol)
}
}
}
}
func TestBandCholeskyDet(t *testing.T) {
t.Parallel()
const tol = 1e-14
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{1, 2, 3, 5, 10} {
for _, k := range []int{0, 1, n / 2, n - 1} {
k := min(k, n-1)
name := fmt.Sprintf("Case n=%d,k=%d", n, k)
a := NewSymBandDense(n, k, nil)
aSym := NewSymDense(n, nil)
for i := 0; i < n; i++ {
aii := rnd.Float64() + float64(n)
a.SetSymBand(i, i, aii)
aSym.SetSym(i, i, aii)
for j := i + 1; j < min(i+k+1, n); j++ {
aij := rnd.Float64()
a.SetSymBand(i, j, aij)
aSym.SetSym(i, j, aij)
}
}
var chol BandCholesky
ok := chol.Factorize(a)
if !ok {
t.Fatalf("%v: Factorize failed", name)
}
var cholDense Cholesky
ok = cholDense.Factorize(aSym)
if !ok {
t.Fatalf("%v: dense Factorize failed", name)
}
want := cholDense.Det()
got := chol.Det()
diff := math.Abs(got - want)
if diff > tol {
t.Errorf("%v: unexpected result; got=%v, want=%v (diff=%v)", name, got, want, diff)
}
}
}
}